J-PARC Symposium 2024

Oct. 16 (Wed.) 2024 Target Parallel 2 17:05-17:30

Simplified Model for Simulating Tritium Behavior in the Spallation Neutron Target System

Yoshimi Kasugai

J-PARC (JAEA)

Introduction

- •Spallation Neutron Source using mercury
 - •Materials and Life Science Experimental Facility (MLF) of J-PARC
- Mercury Target Vessel
 - Stainless Steel (SS)
 - Radiation and Pitting Damage
 - Periodical exchange work => Tritium release
- Behavior of tritium
 - Mercury => Stainless => Air

Layout of J-PARC

Materials & Life Science Experimental Facility (MLF)

Cryogenic Hydrogen Circulation System

Hot Cell

Target Trolley

Neutron Target vessel

Neutron Target Station

Mercury Circulation System

Shutter

Protons

Neutrons

Outline of the Spallation Neutron Target

TIZU

Why We need to Understand the Tritium Behavior?

- Various kinds of radioactive nuclides produced
- Tritium, : T(³H)
 - ~10¹⁴Bq for 1MW-1 year operation.
- Suppression of tritium release during the target exchange work
 - Need understanding the T behavior

First observation of tritium release

- Tritium release from the target vessel was observed on the specimen cut on 2011 for the first time.
 - Presented on the previous J-PARC Symposium in 2019.
 - It was shown that the release behavior could be explained as diffusion from the stainless steel.
 - Comparing the observed tritium concentration to the simplified physical model in which <u>an exact solution</u> of a one-dimensional diffusion equation can be applied.
 - The chemical form of the released tritium was HTO
 - Isotope Exchange: T + $H_2O \rightarrow H + HTO$

Outline of this work

- In this work, a new physical model has been developed to evaluate the averaged behavior of tritium by assuming the whole surface between mercury and the stainless steel as one physical system.
- The evaluations are performed through whole process from (1)<u>Absorption</u> to (2)<u>Release</u> by solving the <u>one-dimensional diffusion</u> <u>equation numerically.</u>

$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2}$$

(1) Absorption Process (Beam-Operation Period)

(2) Release Process (Maintenance Period)

Disconnected for exchange

(1) Absorption Process

- Tritium concentration in mercury is calculated supposing as
 - Homogeneous distribution in mercury

- Tritium diffuses into SS in accordance with the diffusion equation
 - Diffusion coefficients: $D = 1.2 \times 10^{-10} \text{ cm}^2/\text{s}(80 \text{ °C})$
 - Duration of the beam operation: 5,000 hours(~208 days)

(2) Release Process

- Using the depth distribution at the end of the beam operation in SS as initial condition.
- The tritium release rate is calculated by assuming that tritium which reaches at the SS surface is released to air.

Evaluation of Diffusion Coefficient (Tritium in Stainless Steel)

F. Reiter, K. S. Forcey and G. Gervasini: EUR15217 EN (1993)

$$D[m^2/s] = 5.9 \times 10^{-7} e^{-\frac{51.9 \times 10^3}{RT}}$$

T: Temperature[K], *R*: Gas Constant(=8.314 J/K)

T / K

Y. Torikai et al., "Chronic Release of Tritium from Stainless Steel 316", Proceeding of 47th Annual Symposium of the Vacuum Society of Japan (2007)

Period	Temperature	D [cm²/s]
Beam Operation	80 °C (353 K)	1.2×10 ⁻¹⁰
Maintenance	30 °C (303 K)	6.7×10 ⁻¹²

Fig. 5 Comparison of the diffusion coefficients appeared in the literatures with that determined from the chronic tritium release rates at 298 K for series C (\bigcirc) .

Result (1) Absorption Process

Depth distribution of concentration

Diffusion Length = $\sqrt{2Dt} = \sqrt{2 \times 1.23 \times 10^{-10} \text{ cm}^2/\text{s} \times 5000 \text{ h}} = 0.067 \text{ cm}$

Result (2)-1 Release Process

Depth distribution of concentration

15/20

Result (2)-2 Release Process

Ratio of accumulated tritium release to the total absorption

=> Only 30% of tritium can be released for about 1 year.

Result (2)-3 Release Process

Time variation of tritium release rate

=> Even after 30 days, tritium with rate of 7×10^9 Bq/h (more than 10^{11} Bq/d) can be continuously released.

17/20

Result (2)-4 Release Process

Time variation of tritium release rate

=> If the system temperature can be kept at 10°C, the release rate after 30 days decrease by 50% in comparison with that at 30°C.

Future Development

<u>This Work:</u> Evaluated the averaged behavior by assuming the whole surface of the stainless steel as one physical system.

In the Future: Consider tritium movement in mercury using fluid dynamics

=> Evaluate the absorption and release behaviors on stainless steel (SS) in each part separately.

<u>This Work:</u> All tritium that reaches the SS surface by diffusion during the release process is directly released into the air

In the Future: Consider chemical effect of air humidity (water molecules)

[Reference] In the presence of a small amount of oxide layer or in the presence of water vapor of several hundred ppm, almost all of the tritium releases in the form of water (HTO)" ←T. Yamanishi et al., Plasma Fusion Res. Vol.85, No.10 (2009)716-725

In the Future: Comparing the calculation to the actual system

- => Adjust the parameters required for the calculation
- => Precise Evaluation of tritium behavior for more complicated situation.

Summary

- The tritium behavior in the spallation neutron target system with mercury was evaluated using a new physical model.
 - The evaluations are performed through whole process from absorption to release by solving the one-dimensional diffusion equation numerically.
 - The temperature effect for the tritium release rates were shown numerically.
- By developing the model further based on this one, it is expected that tritium behavior can be evaluated more precisely even in a system which is more complicated.