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Magnets for High Intensity Muon Sources
• Large aperture and high magnetic field to 

capture 
• Radiation from production target

• Long solenoid to decay  transport 

MuSIC DC muon source@RCNP

Cryogen-free magnets

900
◼400W proton beam
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◼pion capture system
◼~3x108 +/s, ~108 −/s
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◼1MW pulsed beam
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Production Target

CS Inner Shield

Superconducting
   Solenoid Coils of 
Al-stabilized Conductor

Support Shell of 
Forged Aluminum Alloy

built-in SUS shield (t170)
 as magnet vessel

COMET Pion Capture Solenoid Goal: 1011 −/sec



Radiation Environment for
COMET Pion Capture Solenoid

• COMET Phase-2
• 56kW 8GeV proton beam
• Tungsten target
• Tungsten shield

• Peak heat deposit
• ~40 mW/kg
    → 1MGy for 300day operation

• Peak neutron flux
• ~4x1014 n/m2/s

    → 1021 n/m2 for 30day operation

tungsten
 target

Radiation-tolerant magnet is mandatory



Irradiation Effects in Magnet Materials

• Organic polymer
• Insulator

• GFRP

• Adhesive

• Impregnation

• Pure metal
• Stabilizer

• Thermal conductor

6

ionizing radiation



n

nuclear interaction

Displacement per Atom (DPA) = fraction of interacted atoms

Degradation of
 mechanical strength,
 electrical insulation

Degradation
of conductivity



Coil Structure

Al stabilized SC cable

◼ Size: 4.7x15mm

◼ Offset yield point of Al@4K: 
>85MPa

◼ RRR@0T: >500

◼ Al/Cu/SC: 7.3/0.9/1

◼ 14 SC strands: 1.15mm dia.

• Aluminum stabilized SC cable
• for less nuclear heating

• Radiation resistant insulator, resin
• Polyimide film, Bismaleimide-Triazine resin
• Boron-free glass in GFRP

• Pure aluminum strips in between layers
• to cool down a coil inside



KUR-TR287 (1987)

0.1MeV

reactor

Cryogenics

Irradiation test by reactor 
neutrons
• Kyoto Univ. Research Reactor Institute

• 5MW max. thermal power

• Cryostat close to reactor core

• Sample cool down by He gas loop
• 10K – 20K

• Fast neutron flux(>0.1MeV)
• 1.4x1015 n/m2/s@1MW thermal power

[2] M. Okada et al., NIM A463 (2001) pp213-219 

[2]



Neutron Irradiation / Annealing Effect on Electrical 
Resistance of Stabilizer

• Al: 0.03 nOhm.m for 1020 n/m2

• Cu: 0.01 nOhm.m for 1020 n/m2

• All Al samples show “full” recovery of electrical resistivity after thermal 
cycle to RT.
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Proton irradiation test at J-PARC
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•  3GeV-30GeV proton beam 
from MR

• Installed in 2019

• Pure metal wire cooled by GM cryocooler
• Sample can be inserted to the beam line 

on demand.
• remote handling

sample

purity RRR shape 

Al >99.99% 580 wireφ0.25mm

Cu 99.995% 306 wireφ0.25mm

W 99.95% 28 wireφ0.25mm

Sample

CERNOX
sensor

Thermal
shield

Voltage
sense wire

Cold head

Aluminum
Extension
Rod

1
0
2
0
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Proton Irradiation 

11

• Pure aluminum and copper was irradiated by 8GeV and 30GeV protons

• Damage rate is reproduced by simulation with extensive Molecular 
Dynamics (arc-dpa model)

• Recovery was observed
• Could be perfect even in Cu in this high energy range
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KUR neutrons ~MeV



Irradiation Test of GFRPs

12
A. Idesaki et al., Fusion Engineering and Design 112 (2016) 418–424

Flexural strength test w/ G10 sample irradiated at 30 MGy. 
Delamination of glass sheets is observed.

• BT(bismaleimide triazine)-Epoxy 
GFRP has excellent performance.



Coil Temperature during Beam Operation
(phase-2)
• Peak temperature in coil is estimated assuming 

irradiation by 56kW beam operation

• Assume damage rate at 0.03 nm for 1020 n/m2

• Temperature will rise as thermal conductivity 
degrades by irradiation

• Irradiation damage in aluminum can be 
recovered perfectly by thermal cycling to room 
temperature.

Tcs

Y. Yang et al., IEEE Trans. App. Supercond., 28(3), 4001405 (2018).



• Radiation effects in magnet materials are considered in the magnet 
design.

• Influence of conductivity degradation is serious for LTS coils, while 
COMET magnet is expected to survive.

• Need R&D for next generation magnet



Superconductor for
 the Next Generation Magnet
• Cooling of deposit heat by radiation 

particles is an issue in LTS coils

• High Temperature Superconductor (HTS) 
is better candidate for the next 
generation magnets
• Larger heat capacity at higher temperature

• High tolerance for deposit heat

• Less refrigerator power at higher 
temperature

• Capability for higher field

REBCO tape conductor
Re=Gd,Y,Eu,…



Conceptual Design of Capture Solenoid for J-
PARC MLF 2nd Target Station (TS2)

Proton Beam

Production
Target

Pion Capture Solenoid (PCS)
for Muon Beamline

(10 years operation)

Heat Deposit: ~450 W

Neutron fluence: ~ 1022 n/m2

Absorbed Dose: > 100 MGy

AVG. flux at the top 100 mm 

of the coil

PHITS Code

➢ Stack of double pancake coil

➢ ID=1600 mm

➢ Conductor : REBCO

➢ Operation Temperature: 20 K (He gas cooling with pipe)

➢ Peak Field: 1.11 T at center, 2.25 T (B//c) at coil

Radiation effects on REBCO tape is under investigation



Neutron Irradiation Tests on REBCO conductor

• Neutron irradiation at JRR3 and BR2 
reactor is performed under the GIMRT 
program of the IMR, Tohoku Univ.

• PIE with an external field up to 15.5 T at 
IMR-Oarai.

Temperature Range 4 ~ 80 K

Max. Current 500 A

Max. External Field 15.5 T

Variable Temperature Insert

VTI

15.5 T 
Magn

et
(thermal shield) φ40

ReBCO
L:32mm

BExt.



Results on GdBCO irradiated at BR2
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M. Iio, M. Yoshida, T. Nakamoto, T. Ogitsu, M. Sugano, K. Suzuki, and A. Idesaki, “Investigation of Irradiation Effect on REBCO Coated Conductors for Future 
Radiation-Resistant Magnet Applications,”IEEE Trans. Appl. Supercond., vol. 20, no. 6, Sep. 2022, Art. no. 6601905. 

Degradation was observed at 8x1021 n/m2 
Gd has huge cross section (49kb) of thermal neutrons → 9b on Y, 5kb on Eu
 → PIE on YBCO,EuBCO samples irradiated at JRR3 will be done in this year

x0.6

x0.4

x0.3



Study of Aluminum-stabilized 
HTS conductor

⚫ CCA:  0.17 mm thick, 4 mm wide
(TCu=0.015-0.02 mm, Al: 8030 Alloy)

⚫ REBCO: YBCO with AP x2
(SCS4050HM, W4mm, Ic= 70A)

⚫ Joint length: 200 mm 

⚫ Temperature conditions: 

195℃-2min / 210℃-2.5min / 220℃-4min
• Commercial REBCO tape conductor has less 

stabilizer, a few 10s micro-meter-thick 
copper

• More stabilizer is necessary to avoid 
thermal runaway at quench

• Development of Al-stabilized HTS conductor 
was initiated 

• REBCO tape is soldered on both side of 
copper-clad aluminum (CCA) flat wire

• No degradation by soldering process was 
found.

• Trial with thicker aluminum is planed



Study of Mineral Insulation

• Insulation is another key issue of radiation 
tolerance

• Study of mineral insulation is underway

• Spray coating of alumina-silica on REBCO tape
• heat treatment at 100°C

• 30 m-thick ceramic layer withstands 2kV

• No degradation by coating process was found

• Test coil with mineral insulation is developed 
and tested with ext. field of 9T at BNL
• Analysis underway



Summary

• Radiation-tolerant superconducting magnet is necessary for high-
intensity muon source

•  Radiation effects on magnet materials were investigated so far.
• The results are adopted in the design of the COMET Pion Capture Solenoid

• R&D for further radiation tolerance is on-going for the next 
generation magnets
• Irradiation tests on REBCO tape

• Studies on mineral-insulated aluminum-stabilized HTS coil
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