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Magnets for High Intensity Muon Sources
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COMET Pion Capture Solenoid Goal: 101 y/sec
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Radiation Environment for
COMET Pion Capture Solenoid
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e COMET Phase-2
* 56kW 8GeV proton beam
* Tungsten target
e Tungsten shield

* Peak heat deposit
e ~40 mW/kg
- 1MGy for 300day operation
e Peak neutron flux
e ~4x10* n/m2/s
- 10%! n/m2 for 30day operation

Radiation-tolerant magnet is mandatory
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Irradiation Effects in Magnet Materials
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‘OrganiC p0|ymer ] ionizing radiation
e Insulator Degradation of
mechanical strength,
* GFRP electrical insulation
* Adhesive
* Impregnation
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Coil Structure

e Aluminum stabilized SC cable

» for less nuclear heating

e Radiation resistant insulator, resin
* Polyimide film, Bismaleimide-Triazine resin

* Boron-free glass in GFRP

* Pure aluminum strips in between layers

* to cool down a coil inside

DESIGN PARAMETERS OF CAPTURE SOLENOID MAGNET

Item

Value

Conductor

Cable dimensions

Cable insulation

Magnet length

Num. of coils
Operation current

Max. field on conductor
Stored energy

Coil inner diameter

Aluminum stabilized SC cable
Al/Cu/NbTi=7.3/0.9/1

15.0 x 4.7 mm’ (without insulation)
15.3 % 5.0 mm® (with insulation)
Polyimide film/Boron-free glass
cloth/BT-Epoxy prepreg.

~6 meters

10

2700 A

55T (T=65K)"

47 MJ

1324 mm (CS0~MS2)

500 mm (TS1a~TSle)

800 mm (TS11)

Wwwet

15cm

Al-stabilized
SC Cable

GFRP(BT) spacer

Conductor
~ Ramp/Splice

Al stabilized SC cable

Size: 4.7x15mm

Offset yield point of Al@4K:
>85MPa

RRR@OT: >500
Al/Cu/SC: 7.3/0.9/1
14 SC strands: 1.15mm dia.
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 Cryostat close to reactor core '
e Sample cool down by He gas loop
* 10K -20K
* Fast neutron flux(>0.1MeV)

* 1.4x10*°> n/m?/s@1MW thermal power
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Neutron Irradiation / Annealing Effect on Electrical
Resistance of Stabilizer
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e Al:0.03 nOhm.m for 102° n/m?
e Cu:0.01 nOhm.m for 102° n/m?

« All Al samples show “full” recovery of electrical resistivity after thermal
cycle to RT.

“Repetitive Irradiation Tests at Cryogenic Temperature by Neutrons and Protons on Stabilizer Materials of Superconductor,*
M. Yoshida et al., IEEE Trans. Appl. Supercond, 32(6), 7100405 (2022), doi:10.1109/TASC.2022.3178944



eryocooler

Proton irradiation test atJ PARC

 3GeV-30GeV proton beam
from MR

* Installed in 2019 e | R
o —— A : ' °1 ’ v:ii):(;rlizing,rail
Cold head T e
Sample.Chamber _'\.L‘
Aluminum i = -
Extension 5 purity RRR shape
Rod S Al | >99.99% | 580 | wire¢0.25mm
Cu | 99.995% 306 wire ¢ 0.25mm
W 99.95% 28 wire ¢ 0.25mm
sample * Pure metal wire cooled by GM cryocooler
o e Sample can be inserted to the beam line

f on demand.

* remote handling
10
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“Repetitive Irradiation Tests at Cryogenic Temperature by Neutrons and Protons on Stabilizer Materials of Superconductor,”
M. Yoshida et al., IEEE Trans. Appl. Supercond, 32(6), 7100405 (2022), doi:10.1109/TASC.2022.3178944 1
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1000

Irradiation Test of GFRPs-

e BT(bismaleimide triazine)-Epoxy
GFRP has excellent performance.

Flexural strength test w/ G10 sample irradiated at 30 MGy.
Delamination of glass sheets is observed.

Fig. 3. Change in flexural property of GFRPs after gamma-ray irradiation: displacement-load curves ((a) V-direction and (b) H-direction) and flexu

and (d) H-direction).
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Coil Temperature during Beam Operation
(phase-2)

* Peak temperature in coil is estimated assuming
irradiation by 56kW beam operation
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* Temperature will rise as thermal conductivity
degrades by irradiation

* Irradiation damage in aluminum can be 40T /507 100 150 200 250
. Beam Operation Time [days]
recovered perfectly by thermal cycling to room
temperature.
- - MS1 45K 45k[CS0]. 5«
45K 45K 45K 45K
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Max: 48K Max.: 52K

Y. Yang et al., IEEE Trans. App. Supercond., 28(3), 4001405 (2018).



e Radiation effects in magnet materials are considered in the magnet
design.

* Influence of conductivity degradation is serious for LTS coils, while
COMET magnet is expected to survive.

* Need R&D for next generation magnet



Superconductor for

the Next Generation Magnet

* Cooling of deposit heat by radiation
particles is an issue in LTS coils

* High Temperature Superconductor (HTS)
is better candidate for the next
generation magnets

* Larger heat capacity at higher temperature
* High tolerance for deposit heat

» Less refrigerator power at higher
temperature

e Capability for higher field

REBCO tape conductor
Re=Gd,Y,Eu,...
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Conceptual Design of Capture Solenoid for J-
PARC MLF 2nd Target Station (TS2)

680 720

Pion Capture Solenoid (PCS) HTS Solenoid 200,200, 200 1, |
_ _for Muon Beamline iron Return Yoke q -
(10 years operation) S B [—— 2
O Heat Deposit: ~450 W 3 g [ RedaonSived Rk

Production Target
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O Neutron fluence: ~ 1022 n/m?2
O Absorbed Dose: > 100 MGy

PHITS Code
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g 10 R BIT]
3 &. flux at tre top 100 mm
t 10° of the coil
EpR » Stack of double pancake coil
) » |ID=1600 mm
PR > Conductor : REBCO
1071010101010 107 17 107 107 » Operation Temperature: 20 K (He gas cooling with pipe)
neroy HEY] > Peak Field: 1.11 T at center, 2.25 T (B//c) at coil

Radiation effects on REBCO tape is under investigation



Neutron Irradiation Tests on REBCO conductor

Variable Temperature Insert

 Neutron irradiation at JRR3 and BR2 Temperature Range 4~80K
reactor is performed under the GIMRT Max. Current 500 A
program of the IMR, Tohoku Univ. Max. External Field 155T

2x GM-refrigerators

* PIE with an external field up to 15.5 T at
IMR-Oarai.
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Results on GABCO irradiated at BR2

SCS4050-AP, I criteria: 1 uV/cm V-tap distance: 1.4 cm
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M. lio, M. Yoshida, T. Nakamoto, T. Ogitsu, M. Sugano, K. Suzuki, and A. Idesaki,
Radiation-Resistant Magnet Applications,”IEEE Trans. Appl. Supercond., vol. 20, no. 6, Sep. 2022, Art. no. 6601905.

Degradation was observed at 8x10%! n/m?
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“Investigation of Irradiation Effect on REBCO Coated Conductors for Future

Gd has huge cross section (49kb) of thermal neutrons = 9b on Y, 5kb on Eu
— PIE on YBCO,EuBCO samples irradiated at JRR3 will be done in this year




Study of Aluminum-stabilized
HTS conductor

 Commercial REBCO tape conductor has less
stabilizer, a few 10s micro-meter-thick
copper

* More stabilizer is necessary to avoid
thermal runaway at quench

* Development of Al-stabilized HTS conductor
was initiated

« REBCO tape Is soldered on both side of
copper-clad aluminum (CCA) flat wire

* No degradation by soldering process was
found.

 Trial with thicker aluminum is planed

CCA: 0.17 mm thick, 4 mm wide
(T¢,=0.015-0.02 mm, Al: 8030 Alloy)

REBCO: YBCO with AP x2
(SCS4050HM, W4mm, Ic= 70A)

Joint length: 200 mm

Temperature conditions:
195°C-2min / 210°C-2.5min / 220°C-4min



Study of Mineral Insulation

* Insulation is another key issue of radiation
tolerance

e Study of mineral insulation is underway

* Spray coating of alumina-silica on REBCO tape
* heat treatment at 100°C
* 30 um-thick ceramic layer withstands 2kV
* No degradation by coating process was found

* Test coil with mineral insulation is developed
and tested with ext. field of 9T at BNL

* Analysis underway



Summary

e Radiation-tolerant superconducting magnet is necessary for high-
Intensity muon source

e Radiation effects on magnet materials were investigated so far.
* The results are adopted in the design of the COMET Pion Capture Solenoid

e R&D for further radiation tolerance is on-going for the next
generation magnets
* Irradiation tests on REBCO tape
e Studies on mineral-insulated aluminum-stabilized HTS coil
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