General-purpose trigger-less DAQ system for physics experiments

Contents

- Introduction
- Triggered-type DAQ system in the past J-PARC experiment
- Toward the trigger-less DAQ system
- Standardization
- Summary

KEK IPNS ITDC Ryotaro HONDA **KEK IPNS**

• Y. Igarashi, C.S. Lin, H. Sendai, M. Shoji

RCNP

• M. Ikeno, N. Kobayashi, H. Noumi, S. Ota, S. Ryu, K. Shirotori, K. Suzuki, T.N. Takahashi

RIKEN

• H. Baba

Hardware trigger in the PN experiments

Example of a fixed target experiment

Trigger-less DAQ system in the PN experiments

Triggered-type DAQ system in the past J-PARC experiment

Past experiment in J-PARC hadron hall

$\Sigma^{\pm}p$ scattering experiment (J-PARC E40)

Double scattering experiment

- Generate Σ^{\pm} via $\pi^{\pm}p \rightarrow K^{+}\Sigma^{\pm}$
- Detect $\Sigma^{\pm}p$ scattering event

DAQ trigger: Beam π x scattered K⁺

• Identification of K⁺ was a key

Past experiment in J-PARC hadron hall

Past experiment in J-PARC hadron hall

Byproduct channel

- Generate $\Lambda \operatorname{via} \pi^{-} p \to K^{0} \Lambda$
- Detect Λp scattering event

This channel was almost rejected by the trigger since π^+ is background from the view point of K⁺ identification

Limitation of the hardware trigger system

E40 level-1 trigger system was simple extension of the NIM module-based trigger system. FPGA was used but basic concept of the trigger logic was just a logic coincidence.

- Unrealistic to include slow detectors (drift chamber)
- Simultaneous identification of K^+/K^0 was impossible for us at that time

OK!

Let's introduce a high-performance trigger system used in the collider experiments!

But it is not an easy way...

- Such the trigger system requires dedicated data links to gather hit information from FEE
 - Replacement of all FEEs is necessary to accept such the trigger module
- Development of the FPGA based complex trigger logic takes long time
 - It does not meet with the situation of short-span experiments

Belle-II UT3 (trigger logic module)

Toward a trigger-less data-streaming DAQ system

Overview of the conventional DAQ system

Toward trigger-less data-streaming DAQ system

We would like to develop and standardize the trigger–less DAQ system for various experiments.

Key technologies for high-resolution streaming TDC

FairMQ based DAQ software frame work

- Entire control using service discovery by redis data base
 - Semi-automatic topology generation

Multi-end connection topology

• I-to-n, m-to-I, n-to-m among processes

FairMQ, <u>https://github.com/FairRootGroup/FairMQ</u>

NestDAQ, <u>https://github.com/spadi-alliance/nestdaq</u> T.N. Takahashi, IEEE TNS 70 (6), 922 (2023)

Load balancing

FairMQ based DAQ software frame work

- Entire control using service discovery by redis data base
 - Semi-automatic topology generation

Multi-end connection topology

I-to-n, m-to-I, n-to-m among processes

FairMQ, <u>https://github.com/FairRootGroup/FairMQ</u>

NestDAQ, <u>https://github.com/spadi-alliance/nestdaq</u> T.N. Takahashi, IEEE TNS 70 (6), 922 (2023)

Load balancing

FairMQ based DAQ software frame work

- Entire control using service discovery by redis data base
 - Semi-automatic topology generation

Multi-end connection topology

• I-to-n, m-to-I, n-to-m among processes

FairMQ, <u>https://github.com/FairRootGroup/FairMQ</u>

NestDAQ, <u>https://github.com/spadi-alliance/nestdaq</u> T.N. Takahashi, IEEE TNS 70 (6), 922 (2023)

Load balancing

FairMQ based DAQ software frame work

- Entire control using service discovery by redis data base
 - Semi-automatic topology generation

Multi-end connection topology

• I-to-n, m-to-I, n-to-m among processes

FairMQ, <u>https://github.com/FairRootGroup/FairMQ</u>

NestDAQ, <u>https://github.com/spadi-alliance/nestdaq</u> T.N. Takahashi, IEEE TNS 70 (6), 922 (2023)

Load balancing

FairMQ based DAQ software frame work

- Entire control using service discovery by redis data base
 - Semi-automatic topology generation

Multi-end connection topology

• I-to-n, m-to-I, n-to-m among processes

FairMQ, <u>https://github.com/FairRootGroup/FairMQ</u>

NestDAQ, <u>https://github.com/spadi-alliance/nestdaq</u> T.N. Takahashi, IEEE TNS 70 (6), 922 (2023)

Load balancing

- Data structure starts from the heartbeat frame (524us length) defined by FEE. It is transformed to event based data fragments through Coincidence and Slicer processes.
- Filter analyzes data with the same way that of T-DAQ.

- Data structure starts from the heartbeat frame (524us length) defined by FEE. It is transformed to event based data fragments through Coincidence and Slicer processes.
- Filter analyzes data with the same way that of T-DAQ.

- Data structure starts from the heartbeat frame (524us length) defined by FEE. It is transformed to event based data fragments through Coincidence and Slicer processes.
- Filter analyzes data with the same way that of T-DAQ.

- Data structure starts from the heartbeat frame (524us length) defined by FEE. It is transformed to event based data fragments through Coincidence and Slicer processes.
- Filter analyzes data with the same way that of T-DAQ.

Thought experiment

If this system had been used in the E40 experiment...

- Slow detectors join to the trigger logic.
 - It was impossible in the actual E40 experiment
 - It will allow us to suppress the beam background by using z-vtx information.
- Decision process can be switched based the PID results.
 - K⁰ channel, which was rejected in the actual E40, can be survived in principle.

Flexibility and scalability are feature of the trigger-less DAQ system. It provides a new choice for the DAQ system for the physics experiments.

Implementation in J-PARC experiments and in other facilities

Implementation in hadron facility

We are planning to introduce the trigger-less DAQ system into new beamlines constructed in the hadron facility extension project

Implementation in J-PARC

Replacement of DAQ-middleware with NestDAQ

NestDAQ is an abstract of DAQ software

Standardization of the trigger-less DAQ system

Standardize the developed DAQ system under the SPADI alliance Use the same system in different facilities

J-PARC hadron TI03

Signal processing and data acquisition infrastructure alliance

Standardization of DAQ makes it easier for people and instruments to move around. Develop and maintain the DAQ system throughout our research field

Summary

- The general-purpose trigger-less DAQ system is under development as the next generation DAQ system
 - Features: flexibility and scalability
 - It relieves us from the development of the complex hardware trigger system
- Three key technologies for the trigger-less DAQ system
 - Clock synchronization (MIKUMARI, LACCP)
 - Fast data link
 - DAQ software framework (NestDAQ), which supports
 - Multi-end connection topology
 - Load balancing
- Thought experiment: If this system had been used in the E40 experiment...
 - Slow detectors can join to the trigger logic; it was impossible for the simple coincidence based trigger system
 - K⁰ channel, which was rejected in the actual E40, can be survived in principle.
- Standardization of the developed DAQ system is ongoing under the SPADI alliance

Why trigger-less DAQ system?

Background

- High-intensity (luminosity) beams require more complex trigger logic due to the increase of accidental background.
 - Excellent trigger systems using FPGAs have been successfully used in large-scale experiments, but it is unlikely that the same thing can be done in small- and middle-scale experiments.
 - Barriers to entry for FPGA are high due to its high-education cost, and it is critical for shared beamlines. The detector setup and the trigger logic frequently change experiment by experiment.

Merit

- The fully-software-based trigger logic allows us to include multi-channel slow detector such as wire chambers to the trigger; this is almost impossible for the conventional NIM module based trigger system.
- Software is easier to develop and debug than FPGA firmware, leading to user entry.

The trigger-less DAQ system has advantages for small- and middle-scale experiments, and of course for large-scale experiments.

Stop the Galapagosization (independent evolution) of DAQ systems in each facility and concentrate development resources.