Radiomercury collected during an operation of the neutrino experimental facility, J-PARC

Eisuke Watanabe^{1,2},

K. Takahashi^{1,2}, K. Saito^{1,2}, Y. Oyama^{1,2}, E. Lee^{1,2}, H. Matsumura¹, G. Yoshida¹, K. Tsugane¹, S. Nagaguro^{1,2}, K. Bessho^{1,2}, and H. Yamazaki^{1,2} ¹KEK, ²J-PARC

Radiation monitoring at J-PARC

• At J-PARC, radiation levels and the radioactivity in the exhaust air and drainage water are monitored.

- Airborne activity in exhaust
 - Radioactive gas

Ionization chamber or Plastic scintillator / Nal(Tl) with Pb shield For H-3, silica aerogel traps and liquid scintillator

Radioactive dust

Semi-conductor / GM or Nal(Tl) with filters

Filters: A cellulose-glass fiber filter and a charcoal filter (for I, Hg etc.) replaced once a week and measured with Ge detector

To measure activity without pause, gas monitors are duplicated

J-PARC neutrino experimental facility

- ✓ For T2K experiment (Tokai to Kamioka Long Baseline Neutrino Oscillation Experiment)
- ✓ Beam power of 30-GeV proton achieved 800kW in 2024 and will 1.3MW in 2028.

Radioisotope emission

Radiomercury (rad-Hg) is observed in exhaust air.

- MLFs have huge radioisotopes within the Hg target but do not emit externally.
- Neutrino buildings emit more rad-Hg than MLF.

Emission radioactivity of ¹⁹⁷Hg

✓ MLF neutron source: Liquid Mercury

■MLF ■NU-TS ✓ Neutrino : He-cooled graphite

Where is rad-Hg from...?

Radiomercury in J-PARC

Rad-Hg in the Neutrino exp. facility

- Specific activities in exhaust air are much lower than the regulatory limits.
- It cannot be a barrier to Neutrino physics.
- However, its origin is unclear.

Study on rad-Hg

- To deduce source and production mechanism of rad-Hg in the Neu. TS buildings.
- To show that the rad-Hg at the Neu. exp. facility is not related to MLF.
- To understand behavior of rad-Hg to establish measuring and controlling method.
 Contributing for whole of safe management of J-PARC.

Outline

Deducing the source and production mechanism of rad-Hg

✓ Experimentally collecting radiomercury with activated carbon (AC)
 ✓ Radiation environment calculation with PHITS code
 ✓ Model radioisotope yield calculation with PHITS code

Establishing measurement method of rad-Hg

✓ Preliminary experiment using chemical-modified AC

Radiation environment of the neutrino exp. facility

Target Station Building, Neutrino Exp. Facility

Target Station Building, Neutrino Exp. Facility

Collecting radiomercury with activated carbon cartridge

Air sampling

Method

- Air sampling experiment was conducted in June 2024 operation.
- The air in the machinery room was collected for 134 min at 100 L/min flow rate.
- Gas monitors (ionization chamber) in the outside of interlocked area were used.
- Activated carbon cartridges "CHC" (ADVANTEC), filter paper HE-40T (ADVANTEC) for dust filters were used.

Gamma-ray analysis

✓ Sample was transported from the neu. TS to the rad. measurement bldg.
 ✓ Gamma-ray measurement with Ge semiconductor detector.

Collection radiomercury in the machinery room

✓ Observed various rad-Hg isotopes on an activated carbon filter.

Insight through Accelerators.

(At the end of collection)

Comparison with model nuclear reaction calculation by PHITS

Model isotope production calculation

✓ Model calculations were conducted to deduce the "target material"

Hg and Pb are supposed to produce rad-Ho

Estimation of rad-Hg production

Source candidates;

- Naturally present Hg (1.7 ng/m³) and Pb (73 ng/m³) in air
- Building concrete (Pb)...?
- Some accelerator component...?

Collected and estimated amount of rad-Hg in the air from the machinery room ($V = 13.4 \text{ m}^3$)

Rad-Hg production can be roughly explained by the activation of heavy metals in the air.

✓ Thermal neutron is not considered for calc.
 ➢ Hg-195, 197, 203 is underestimated

✓ 190 ≤ A ≤ 193 seems to be overestimated
 ➢ Much neutron lower than 100MeV?

Accurate understanding rad. env. of TS bldg.

- PHITS calculated much population of neutron with 100-200 MeV in the machinery room.
- By comparison between exp. and Calc,, TS machinery room has less neutron with > 100-200 MeV.
- We are planning actual measurements of the radiation field in the machinery room to verify "natural Hg and Pb hypothesis"

Towards a study of chemistry of rad-Hg: a preliminary result

Amount of rad-Hg produced in the neutrino experimental facilities is sufficiently small.

• Even with 1.3 MW beam power, no barrier to neutrino physics.

On the other hand...

- Collection and measurement methods for airborne rad-Hg is not established enough.
- Important for the radiological control for all facility of J-PARC.

Chemical-modified Activated Carbon

- \checkmark Few available data on mercury collection efficiency on AC.
 - > Based on the study of radiomercury "production" in JAERI's reactor in 1970's.
- \checkmark No data available on the efficiency of commercially available chemically modified AC.

In the 2024A neutrino operation...

Conducted rad-Hg collection using TEDA-containing activated carbon cartridges.

- Add 10% triethylenediamine to CHC to improve the adsorption rate of radioiodine.
- The adsorption rate for methyliodine is increased.

Adsorption experiment

		CHC				CHC-TEDA	
	Beam time	3d 16:22		4d 11:50		5d 00:43	
	POT	4.53E+19		6.05E+19		7.12E+19	
		Activity		Activity		Activity	
		(Bq)	err	(Bq)	err	(Bq)	err
on CHC	^{197m} Hg	3.26.E+03	3.74.E+01	3.77.E+03	1.39.E+01	2.35.E+02	2.93.E+01
	²⁰³ Hg	9.03.E+01	6.41.E-01	3.95.E+02	1.19.E+00	1.45.E+01	2.76.E-01
	⁸² Br	1.78.E+02	9.02.E+00	3.40.E+02	4.60.E+00	2.58.E+03	2.24.E+01
on HE	⁷ Be	1.64.E+03	1.48.E+01	1.70.E+03	3.23.E+00	1.73.E+03	7.29.E+00
	²⁴ Na	2.33.E+02	5.67.E+00	6.86.E+01	4.05.E-01	1.37.E+03	1.00.E+02

The reduction of rad-Hg adsorption

- 1) complex formation and volatilisation of Hg⁰ and TEDA?
- 2) Decrease in the number of activated carbon adsorption sites due to TEDA impregnation?

Euture plan: FeCl₂, CuCl₂-containing AC...

Summary

- J-PARC neutrino experimental facility emits much less rad-Hg than the regulation value.
- It is semi-quantitatively estimated that the source is probably naturally-present mercury and lead in the air.
- The accelerators upgrade has resulted in background observations of nuclides that were not previously observed.
- Rad-Hg in the neutrino facility would not be related to the MLF.
- We are trying to develop a method of collecting rad-Hg using chemically modified activated carbon in the future.

