

15-17 Oct. 2024 The 4th J-PARC Symposium

Current Status of Handling Technologies for Lead-Bismuth Spallation Target in J-PARC

<u>H.Obayashi</u>, K.Yamaki, S.Kita, K.Kurosawa and S.Saito Nuclear transmutation division, J-PARC Center, JAEA

Introduction

Status of Lead-Bismuth handling technologies

- Flow monitoring device
- Dissolved oxygen control
- Control of impurities

Accelerator-driven system (ADS) proposed by JAEA –LBE target/cooled concept

Specifications of a commercial ADS proposed by JAEA

- Proton beam: Energy 1.5GeV / Power 20MW
- Spallation target:

Pb-Bi eutectic alloy (LBE)

- Coolant: LBE
- Subcriticality: $k_{eff} = 0.97$
- Thermal output: 800MWt
- Core height: 1000mm
- MA initial inventory: 2.5t
- Fuel composition:

(60%MA + 40%Pu) Mono-nitride

• Transmutation rate:

10%MA / Year (10 units of LWR)

• Burn-up reactivity swing: $1.8\%\Delta k/k$

J-PARC

Plan of ADS target test facility (TEF-T) & LBE spallation target in J-PARC

Introduction

Status of Lead-Bismuth handling technologies

- Flow monitoring device
- Dissolved oxygen control
- Control of impurities

Flow monitoring device: Ultrasonic flowmeter (1/4)

Typical flowmeter for high temperature LM

Electromagnetic flowmeter: Degradation (Corrosion or Accumulation of CPs), Calibration needed

Objective

- Development of LBE flowmeter withstanding practical conditions Coriolis(SCK CEN), Thermal mass flow(ENEA), **Ultrasonic** (Based on SFR's technology in JAEA)
- provides mean velocity along the signal path by using propagation time difference of ultrasonic signal.
- No need for calibration, Non-contact type is available

Features of ultrasonic sensor		
Element (Oscillator)	Lithium niobate (LiNbO ₃)	
Temperature range	< 500°C	
Radiation resistance	Worked well after γ-irradiation (Dose: 10 MGy)	

Sufficient performance for LBE application

Flow monitoring device: Ultrasonic flowmeter (2/4)

- How to ensure wet condition?
- LBE shows poor wettability due to its surface tension. Non-wet condition (Solid/LBE boundary)
- \Rightarrow Ultrasonic signal cannot propagate to LBE
- Application of Hi-Cr steel
- Fine mirror-finishing on solid surface

SEM/EDX observation image

Improve LBE wettability

LBE droplet @ 600 deg C

Flow monitoring device: Ultrasonic flowmeter (3/4)

Plug immersion type

- Us-signal propagates opposite side via the sensor plug.
- Sufficiently work with accuracy less than 3% under TEF-T condition
- ⇒Already applicable to LBE target system.
- Disturbed flow due to the $\pi\mbox{-shaped}$ piping promote erosion on the

downstream side.

<u>Non-contact type</u>

- Us-signal propagates opposite side via the wall of round tube. Two sensors are placed outside the flow channel.
- Measurement section is composed of a straight pipe with the same diameter as the system piping ⇒ Flow disturbance can be minimized

Other method for local flow: EM probe

- Miniature electromagnetic flowmeter
- Diameter: 6 mm, Up to 450 deg C

J. Pacio, et al., NED, vol. 399, 1 December 2022, 112010

Flow monitoring device: Ultrasonic flowmeter (4/4)

Common problem for Us-tech.

Wetting is lost under re-wetted conditions.
⇒Overcome by improving wettability (Previous slide: Material, Surface treatment)

Signal strength (Peak va	alue)
Before loop shutdown	1
Required for Meas.	0.02
Loop restart	0.1
1,500 hours later	0.99

- The signal strength was reduced by 90%.
 However, the signal strength required for measurement was ensured.
- ✓ After 1500 hours of operation, the intensity recovered to the value before shutdown.
- The system has provided stable measurement results for more than 20,000 hours.

<u>Remaining issue for long-term application</u> Evaluation regarding the influence of changes of boundary condition

Introduction

Status of Lead-Bismuth handling technologies

- Flow monitoring device
- Dissolved oxygen control
- Control of impurities

Oxygen sensor / dissolved oxygen control

Erosion/corrosion observed in JLBL-1 (Low OC condition)

Protection method

Formation of oxide film (Fe₃O₄) on base material by controlling oxygen concentration Oxide film: Barrier to LBE

<u>Objective</u>

Developing reliable dissolved oxygen detection technology and technology to control OC in LBE

Oxygen sensor

Result of performance comparison test (Stagnant LBE)

Freeze-seal structure (Original design)

 \Rightarrow prevents outflow of LBE when the YSZ is broken

Performed performance comparison tests with a sensor

developed by another research institute (SCK CEN)

- ✓ Developed sensor achieves the same performance as sensors in other institutions.
- ✓ EMF error @ 450 deg C was 0.5%.
- ✓ There are individual differences in degradation due to long-term (several years) use. ⇒Under investigation
- $\checkmark\,$ A compact sensor with the same performance was also

developed in cooperation with a company.

J-PARC

Control technology for dissolved oxygen: gas/LBE oxygen-transfer method

- Dissolved oxygen in LBE flow:
- constantly consumed for oxide film growth
- ⇒To maintain OC, oxygen must be supplied to the LBE.

Gas/LBE oxygen-transfer method

Control gas is supplied to the cover gas and oxygen is supplied to the LBE via the interface. Control gas: Ar+2%O₂

• Corrosion test under flowing LBE

• Demonstration test of OC control

Temperature: Max. 550 deg C LBE inventory: 100 L LBE flow rate: Max. 40 L/min Material: T91(Hot leg), 316SS(Cold leg) Corrosion sample: Rectangular plate x27/holder

Gas/LBE oxygen-transfer method

Control technology for dissolved oxygen: gas/LBE oxygen-transfer method

Temperature & EMF during a corrosion test

Experimental condition

Operating conditions for TEF-T

- Temperature: 450/350 deg C
- OC: 1x10⁻⁶wt%
- Beam operation time: 5,000 hours (This corrosion test: 7,000 hours)

OC control result

Max: 3.1x10⁻⁶wt%, Min: 1.0x10⁻⁶wt% Total of exhaust gas: 2.2 m³

✓ The OC has been well controlled in the appropriate range for more than 5,000 hours.
 ✓ Long term & stable control of OC has been achieved.
 □ Upgrades are underway to provide more precise control.

Introduction

Status of Lead-Bismuth handling technologies

- Flow monitoring device
- Dissolved oxygen control
- Control of impurities

Evaluation of impurities content

- LBE dissolves various material components due to its corrosiveness.
- (e.g. Ni: 1-2 kg / 1000 kg LBE)
- Dissolved impurities or their compounds precipitate in the cold leg and eventually cause plugging.
- ⇒Need technology to purify LBE

Observations of dissolved major material components (Fe, Cr, Ni) in LBE sample (from OLLOCHI) was started.

- ✓ Fe: below detection limit
- ✓ Cr: below detection limit
- ✓ Ni: Continuously rising over time Ni solubility: 23mg/g@450 deg C

J-PRRC

Analysis code for impurity transfer: collaboration with Fukui univ.

TRAIL analysis model for LBE circulation loop of MEGAPIE.

(40mm) : estimated value

Analysis code: TRAIL

Predict the time dependent behavior of SPs within the LBE coolant system of ADS

S. Miyahara, et al., NED, vol. 403, March 2023, 112147

- ✓ This code was verified by comparing the results with the distribution data in MEGAPIE spallation target.
- ✓ This code could reproduce the released amount of volatile SP material from LBE into the cover gas reasonably.

Purification system design

- Modifications are ongoing to predict elution and transfer of material components.
- ⇒Sensitivity analysis on deposition of CPs (especially Ni compound)

Introduction

Status of Lead-Bismuth handling technologies

- Flow monitoring device
- Dissolved oxygen control
- Control of impurities

Summary

 The development of LBE handling technologies has progressed and is being established.

Further enhancements are under development.

Handling of dissolved impurities is a key remaining issue that is essential to establishing LBE system.

Predictive analysis method and analysis of LBE samples are being performed in parallel to realize LBE purification system.

Fin

Thank you for your kind attention.

Diagram of OLLOCHI

System diagram of OC control system

- OC is controlled by adding control gases to the cover gas in exp. tank.
- Oxidation / reduction reaction proceed via the free surface.
- Only oxidizing gas is used for OC control during corrosion test.

OC control method (2/2)

Dissolved oxygen is continuously consumed for the growth of the oxide film.

- When EMF reached CTV+10µV, the system starts supply of the control gas.
- 2 Gas supply is stopped immediately afterwards when EMF decreases again to CTV.

Control gas speed is constant. (250 ml/min)