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Quantum computing
Conventional computers Quantum computers

Quantum computers works in a similar manner to classical ones, but with different gates

{NAND} is a universal gateset {CNOT, T, H} is a universal gateset
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Power of quantum computers
p Simulating dynamics of interacting 𝑛 ½-spins [S. Lloyd, Science, 273, 1073-1078 (1996)]

𝑂 2! → poly 𝑛

p Factoring of 𝑛 bit integers [P. W. Shor, Proceedings 35th Annual Symposium on Foundations of Computer Science, 124-134 (1994)]

𝑂 𝑒".$!!/# %&' ! $/# → 𝑂 𝑛( log 𝑛 log log 𝑛

p Searching among 𝑁 possibilities [L. K. Grover, Proceedings, 28th Annual ACM Symposium on the Theory of Computing, 212-219, 
(1996)]

𝑂 𝑁 → 𝑂 𝑁

p Inversion of sparse 𝑁×𝑁 matrix (sparseness 𝑠, condition number 𝜅, precision 1/𝜖) [A. Harrow et al., PRL, 
103, 150502 (2009)]

𝑂 𝑁𝑠 𝜅 log 1/𝜖 → 2𝑂 log𝑁 𝑠(𝜅(/𝜖

Many applications, but needs hardware for realizing them
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Current quantum hardware as of 2024

F. Arute et al., Nature 2019

2019 53 qubit
(transmon qubits)

2023 70 qubit
(transmon qubits)

Google Quantum AI., arXiv: 2304:11119

2023 280 qubit 
(neutral atoms)

2024 105 qubit
(transmon qubits)

D. Bluvstein et al., Nature 2023 Google Quantum AI., arXiv: 2408.13687

2023 56 qubit 
(ion trap)

Quantum supremacy demonstrated: 
classical supercomputer could not simulate dynamics of 
a programmable, gate-based, quantum device.

Quantum error correction demonstrated:
error correction seems to be possible in real 
world, for the first time.

S. A. Moses et al., PRX 2023
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Our ultimate goal: fault-tolerant quantum computing
Current error rate of qubits ~ 0.1% [Arute et. al., Nature (2019)]

Error rate of classical bits ~ 10-17 % [Oliveira et al, SC17 (2017)]
* Converting FIT to error rate from the number of clocks

Error correction is essential for “normal" calculations

000 010 000
Error Majority vote

Repetition code

Surface code Make clean 1 qubit with ~1000 qubits
[Phys. Rev. A 86, 032324 (2012)]
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My talk today
Ø Developing more efficient algorithms and frameworks are very important to harness the power of 

quantum.

Ø First part: efficient simulation algorithm for Schwinger model and its applications.

Ø Second part: a novel quantum machine learning framework
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First part: 
quantum algorithm for Schwinger model

7

K. Sakamoto, Hayata Morisaki, Junichi Haruna, Etsuko Itou, Keisuke Fujii, Kosuke Mitarai, 
“End-to-end complexity for simulating the Schwinger model on quantum computers”, 
arXiv:2311.17388 
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Schwinger model

⋯ ⋯
Electron Positron

Electric field

Electron ElectronPositron Positron

Two types of Hamiltonian 
formulation

One of the simplest yet non-trivial gauge theories

⋯ ⋯⋯ ⋯

Λ Λ Λ Λ Λ

−Λ −Λ −Λ −Λ −Λ

Truncate the electric field at Λ
Remove the electric field with 
Gauss’s law

Our work

J. Kogut, et al, Phys. Rev. D (1975). T. Banks, et al, Phys. Rev. D (1976). 
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The cost is estimated via number of T gates

R. Babbush, et al, Phys. Rev. X, (2018). 

Ø In FTQC setting, T gates are the most costly.

Ø FTQC usually allows {H, CNOT, T} gates, which are universal.

Ø H and CNOT gates are very easy, but T gates need large space-time cost.

Ø It is because of the structure of error-correction codes defined via commuting Pauli operators.

Ø Note added: recent works (Itogawa et al., arXiv: 2403.03991, Gidney et al., arXiv:2409.17595) 
might change the situation. Number of T gates, however, still roughly represents how many 
gates we need.
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Previous works on Schwinger model for 𝒆!𝒊𝑯𝒕

Ø The Hamiltonian formulation which has electric field

System size : 𝑁
Precision : 𝜀
Evolution time : 𝑡E. A. Martinez, et al, Nature 534, 516 (2016).

N. H. Nguyen, et al, PRX Quantum 3, 020324 (2022). 𝑂 ⁄𝑁).*𝑡".* 𝜀+.*

Y. Tong, et al, Quantum 6, 816 (2022). 2𝑂 𝑁𝑡 polylog( ⁄1 𝜀 )
‐ The smallest query complexity at present
‐ Probably needs a huge number of qubits

2𝑂 ⁄𝑁(.*𝑡".* 𝜀+.* )A. F. Shaw, et al, Quantum 4, 306 (2020). 
‐ Based on Trotter formula
‐ Provides rigorous cost analysis

Our work 2𝑂 𝑁)𝑡 + log ⁄1 𝜀
‐ Based on Trotter formula

Ø The Hamiltonian formulation which does not have electric field

Ø Our work improves in every factor from the previous Trotter-based one.
Ø Compared to ones with electric field, our algorithm needs smaller number of qubits.
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Block-encoding 
Ø Block-encoding of a Hamiltonian 𝐻 is defined as,

𝑈 = 0, 0, ⊗𝐻 +⋯ = 𝐻 ⋅
⋅ ⋅

We will see how to implement such 𝑈 on the next page.

Ø Here we assume 𝑈( = 𝐼. This holds for popular block-encoding implementations.

Ø Let 𝑅 = 2 0, 0, ⊗ 𝐼 − 𝐼 ⊗ 𝐼; 𝑅 adds phase -1 when first 𝑏 qubits are not 0 .

Ø Surprisingly, the following holds:
𝑅𝑈 ! = 𝑅𝑈⋯𝑅𝑈𝑅𝑈 = 𝑇! 𝐻 ⋅

⋅ ⋅
where 𝑇!(𝐻) is the Chebyshev polynomial.

Ø Advantages:

Ø Block-encoding 𝑼 of 𝑯 with error 𝝐 only requires 𝑶 𝐥𝐨𝐠 𝟏/𝝐 gates in most cases. (Trotter 
expansion needs poly 1/𝜖 gates.)

Ø We can get any information about 𝑯 with 𝑻𝒏 𝑯 ; Most functions can be efficiently 
approximated by linear combination of 𝑻𝒏(𝒙).

See also: John M. Martyn et al., “Grand Unification of Quantum Algorithms”, 
PRX Quantum 2, 040203 (2021)
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Block-encoding of Pauli-sum Hamiltonians
Ø Assume Hamiltonian is decomposed as sum of Pauli operators 𝑃 ∈ ± 𝐼, 𝑋, 𝑌, 𝑍 ⊗!:

𝐻 =V
/0+

12"

𝑎/𝑃/

Furthermore, assume 𝑎3 > 0 and it is normalized such that ∑3 𝑎3 = 1.

Ø Let the PREPARE operator PREP and SELECT operator SELECT be ones that satisfies:

PREP 0, =V
/0+

12"

𝑎/ , SELECT 𝑙 𝜓 = 𝑙 ⊗ 𝑃/ 𝜓

Ø The following gives a block-encoding:

R. Babbush, et al, Phys. Rev. X, (2018)Ø 𝑃 and 𝑉 can be implemented 𝑂(𝐿 + log 1/𝜖) gates (using ancillary qubits).

Ø This technique is called the linear combination of unitaries (LCU).
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Our idea to efficiently implement block-encoding
Ø The Schwinger model Hamiltonian after Jordan-Wigner transformation looks like:

Y. R. Sanders, et al, PRX Quantum (2020)

Ø It has 𝑂 𝑁( terms, we naively need 𝑂 𝑁( gates to block-encode 𝐻4.

Ø Our strategy to realize it with 𝑶 𝑵 gates:

Ø Uniform superposition states "5∑30+
52" 𝑖 can be prepared efficiently with 𝑂(log 𝑁) T gates.

Ø We can take a linear combination of the block-encodings via LCU.

Ø Noting the above, group the terms as follows:



Osaka University
14

Quantum circuit for block-encoding looks like…
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Resource estimates for computing vac 𝑒!%&' vac
Ø vac = 1010⋯ is the ground state of 𝐻4 for 𝐽 = 𝜃+ = 𝑤 = 0,𝑚 = 𝑚+, representing vacuum 

without any particle.

Ø vac 𝑒2367 vac is vacuum persistent amplitude, representing the creation and annihilation of 
electron-positron pairs

Ø Based on our block-encoding, how long does it take to compute it with FTQC?

J. Schwinger, Phys. Rev. (1951)
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Resource estimate result - runtime

Runtime for calculating the vacuum persistence amplitude.

• Parameters

Examples
System size Runtime [days]
64 26
128 200

• Precision (additive error) : 𝜀 = 0.01
• Evolution time                 : 𝑡 = 4
• T gate consumption rate : 1MHz
• Lattice spacing                : 𝑎 = 0.2
• electron mass                  : 𝑚 = 0.1
• 𝑤 = !

"#
= 2.5

• 𝐽 = $!#
"
= 0.1, (𝑔 = 1)

• 𝜃% = 𝜋

64 128

26

200
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Resource estimate result: qubit requirements

Examples (𝑁 = 64)
Physical error rate Physical pubits
10&' 9×10(

10&) 2×10( The number of physical qubits 
for calculating the vacuum persistence amplitude.

• Parameters
• Precision (additive error) : 𝜀 = 0.01
• Evolution time                 : 𝑡 = 4
• Lattice spacing                : 𝑎 = 0.2
• electron mass                  : 𝑚 = 0.1
• 𝑤 = !

"#
= 2.5

• 𝐽 = $!#
"
= 0.1, (𝑔 = 1)

• 𝜃% = 𝜋



Osaka University
18

Summary
Comparing resource to other applications

< ≈
N. Yoshioka, et al, arXiv:2210.14109, (2022) J. Lee, et al, PRX Quantum (2021)

T count : ~108 ~10"( ~10"(

Condensed matter physics 
(e.g. Hubbard model) Schwinger model Quantum chemistry 

(electronic Hamiltonian)

▐ Technical contributions:
• An efficient block-encoding of the Schwinger model Hamiltonian

• End-to-end complexity for the Schwinger model

‐ Decompose the Hamiltonian into several parts.
‐ Use 𝑂 log(𝑁 T gates for 𝑃, 𝑂 𝑁 T gates for 𝑉, with a normalization factor of 𝑂 𝑁9 .

▐ Future challenges:
• More precise resource estimates. Maybe using libraries such as qualtran or Qiskit, which 

have implementations of reversible arithmetics. 
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A new quantum machine learning framework:
Explicit quantum surrogate

19

Akimoto Nakayama, Hayata Morisaki, Kosuke Mitarai, Hiroshi Ueda, Keisuke Fujii, 
“Explicit quantum surrogates for quantum kernel models”, arXiv:2408.03000 



Osaka University
20

Feature map

Linear model fails

𝑥(

𝑥"

𝑥"

𝑥(

𝑥9 = 𝑥"( + 𝑥((

Linear model succeeds

Feature map

Transform data 𝒙 to 𝝓 𝒙 to extract “pattern” in the data.
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Quantum feature
Ø Map a data 𝒙 to a quantum state 𝜓 𝒙

Ø Difficult to classically simulate 𝜓 𝒙
→ We can construct a model which cannot be treated with classical computers

Ø Note!: it doesn’t mean there is practical advantage.

Ø Models based on quantum feature can be categorized into two major class:
explicit models and implicit models

Feature map

𝑥9

𝑥: 𝜓 𝒙 , 𝜌(𝒙)

𝑈 𝒙
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Explicit quantum models

𝑉 𝜽0 𝑈 𝒙

Output after 
training

Input data 𝒙
Teacher data 𝑦
𝑦

[KM, et al, Phys. Rev. A 98, 032309 (2018)]

Ø Apply parameterized unitary 𝑽 𝜽 and use some expectation value as a prediction.

𝑂

Ø Training is performed by tuning 𝜽 via e.g. gradient decent.

Ø Advantage:

Ø Can use optimizers from neural networks, such as Adam.

Ø One training iteration needs only 𝑂 𝑁 resource for 𝑁 data.

Ø Disadvantage:

Ø Theoretical performance not guaranteed.

Ø Difficult optimization, barren plateau (gradient vanishes when using random initialization.)
McClean et al., Nat. Comm. 9, 4612 (2018)



Osaka University
23

Implicit quantum models
Ø Using 𝑘 𝒙3, 𝒙: = 𝜓 𝒙3 𝜓 𝒙:

( as a kernel function, rely on classical kernel techniques for 
constructing a model. Model in this case is represented by

𝑦 =V
30𝟏

5

𝛼3𝑘 𝒙3, 𝒙: =V
30𝟏

5

𝛼3

Ø Training is performed by tuning 𝜶 via, e.g., solving linear system of equations.

Ø Advantage:

Ø Convergence to global optimum guaranteed.

Ø Friendly to experiments, >20 qubits experiments are possible.

Ø Disadvantage:

Ø Needs at least 𝑂 𝑁( cost for training, 𝑶 𝑵 cost for prediction.

𝑈 𝒙3 𝑈< 𝒙:0 Prob. of 0

So we thought, can we train a model implicitly and then convert it to explicit ones?
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Implicit to explicit conversion

Explicit quantum surrogate (EQS)

1. Train a quantum implicit model with your choice of quantum feature map 𝑈 𝒙

2. Diagonalize 𝑂 = ∑3 𝛼3 𝜓 𝒙3 𝜓 𝒙3 and identify 𝐾 important eigenvectors 𝜆= .

3. Construct a circuit 𝐶 that satisfies 𝐶 𝑘 ≈ 𝜆= using AQCE algorithm [Shirakawa et al., Phys. Rev. Research 
6, 043008 (2024)].

Algorithm

Ø Step 2 can be done efficiently on a classical computer when given 𝜓 𝒙3 𝜓 𝒙: from quantum, 
because rank 𝑂 ≤ 𝑁

Ø AQCE algorithm brute-forcely searches possible circuits using ideas from tensor network.

Notes
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Numerics: Accuracy for MNISQ-MNIST dataset

ü MNISQ dataset [Placidi et al., arXiv:2306.16627] is a dataset developed by us, which consists of 
quantum circuits that approximately encodes MNIST handwritten digits.

ü The conversion needs relatively small 𝐾 and low fidelity (>0.6).

ü Numerics demonstrate that we can suppress the prediction cost by this approach.
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Numerics: EQS as an initialization strategy

ü Motivation Random circuit initialization leads to barren plateau, but EQS constrction is not random. 
Can our approach mitigate the barren plateau?

ü Numerics show that magnitude of gradients are (EQS) ≫ (Random initialization)

ü EQS might open a way to mitigate the barren plateau.
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My talk today
Ø Developing more efficient algorithms and frameworks are very important to harness the power of 

quantum.

Ø First part: efficient simulation algorithm for Schwinger model and its applications.

Ø We constructed algorithm based on block-encoding framework with detailed resource 
estimates.

Ø We need around 1 million physical qubits and for 1012 gates for ~100 site Schwinger model.  

Ø Second part: a novel quantum machine learning framework

Ø Converting trained implicit models to explicit models has various benefits: Shorter prediction 
time, potential to mitigate barren plateau, etc. 
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Some ads

28



Osaka University
29

Qcoder: competitive quantum programming 
Ø An IPA MITOU project (for which I am doing technical adviser)

Ø Competitive programming using qiskit.

An example problem from the latest contest:

Access qcoder.jp
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We are conducting full-stack research 

Chemistry: Prof. Mizukami
Many-body/cond-mat: Prof. Ueda
Machine learning: Mitarai

Phys. Rev. X 2, 031007 (2016)

Layers for practical quantum computing

Mitarai, Prof. Fujii

Prof. Fujii

Prof. Negoro, Miyoshi, Ogawa with QuEL, 
quantum middleware startup

Superconducting qubits: Prof. Negoro
Ion trap: Prof. Toyoda 
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Current quantum computer system @ OU

Qubit chip

Control system (middleware)

Edge server (transpiling/compiling)

User

AWS (authentication, data storage, etc.)

OpenQASM (quantum assembly)

OpenQASM (quantum assembly)

Transpiled QASM

Microwave pulses

OPENQASM 2.0;
include "qelib1.inc";
qreg q[4];
cx q[0],q[1];
rz(-0.09609732239232643) q[1];
cx q[0],q[1];
cx q[1],q[2];
rz(-0.06088586113564654) q[2];
cx q[1],q[2];
...
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We are open to collaborate!
Hosting/sending students/researchers is always welcome.

Contact me at mitarai.kosuke.es@osaka-u.ac.jp

mailto:mitarai.kosuke.es@osaka-u.ac.jp

