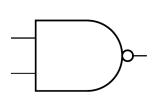
From algorithms to applications: potential roles of quantum computing

Kosuke Mitarai Osaka University

Quantum computing

Conventional computers

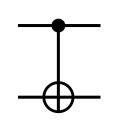
{NAND} is a universal gateset



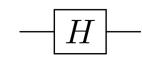
Input	Output
00	1
01	1
10	1
11	0

Quantum computers

{CNOT, T, H} is a universal gateset



Input	Output
00>	00>
01>	01>
10>	11>
11>	10⟩



0>	$(0\rangle + 1\rangle)/\sqrt{2}$
1>	$(0\rangle - 1\rangle)/\sqrt{2}$

0>	0>
1>	$\exp(i\pi/4) 1\rangle$

Power of quantum computers

- Simulating dynamics of interacting $n \frac{1}{2}$ -spins [S. Lloyd, Science, **273**, 1073-1078 (1996)] $O(2^n) \rightarrow \text{poly } n$
- Factoring of n bit integers [P. W. Shor, Proceedings 35th Annual Symposium on Foundations of Computer Science, 124-134 (1994)] $O\left(e^{1.9n^{1/3}(\log n)^{2/3}}\right) \to O\left(n^2 \log n \log \log n\right)$
- Searching among *N* possibilities [L. K. Grover, Proceedings, 28th Annual ACM Symposium on the Theory of Computing, 212-219, (1996)]

$$O(N) \to O(\sqrt{N})$$

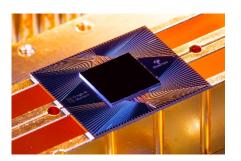
Inversion of sparse $N \times N$ matrix (sparseness s, condition number κ , precision $1/\epsilon$) [A. Harrow et al., PRL, **103**, 150502 (2009)]

$$O(Ns\sqrt{\kappa}\log 1/\epsilon) \to \tilde{O}(\log N s^2\kappa^2/\epsilon)$$

Many applications, but needs hardware for realizing them

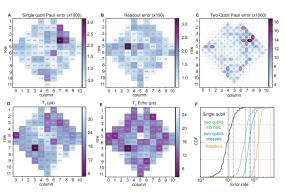
Current quantum hardware as of 2024

2019 53 qubit (transmon qubits)



F. Arute et al., Nature 2019

2023 70 qubit (transmon qubits)

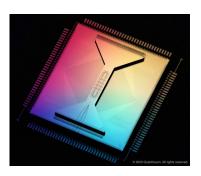


Google Quantum Al., arXiv: 2304:11119

Quantum supremacy demonstrated:

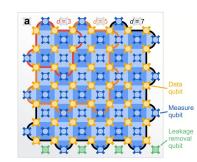
classical supercomputer could not simulate dynamics of a programmable, gate-based, quantum device.

2023 56 qubit (ion trap)



2023 280 qubit (neutral atoms)

2024 105 qubit (transmon qubits)



Quantum error correction demonstrated: error correction seems to be possible in real world, for the first time.

Our ultimate goal: fault-tolerant quantum computing

Current error rate of qubits ~ 0.1% [Arute et. al., Nature (2019)]

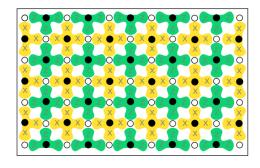
Error rate of classical bits ~ 10⁻¹⁷ % [Oliveira et al, SC17 (2017)]

* Converting FIT to error rate from the number of clocks

Error correction is essential for "normal" calculations

Repetition code 000 _____ 010 ____ 000

Surface code



Make clean 1 qubit with ~1000 qubits

[Phys. Rev. A **86**, 032324 (2012)]

My talk today

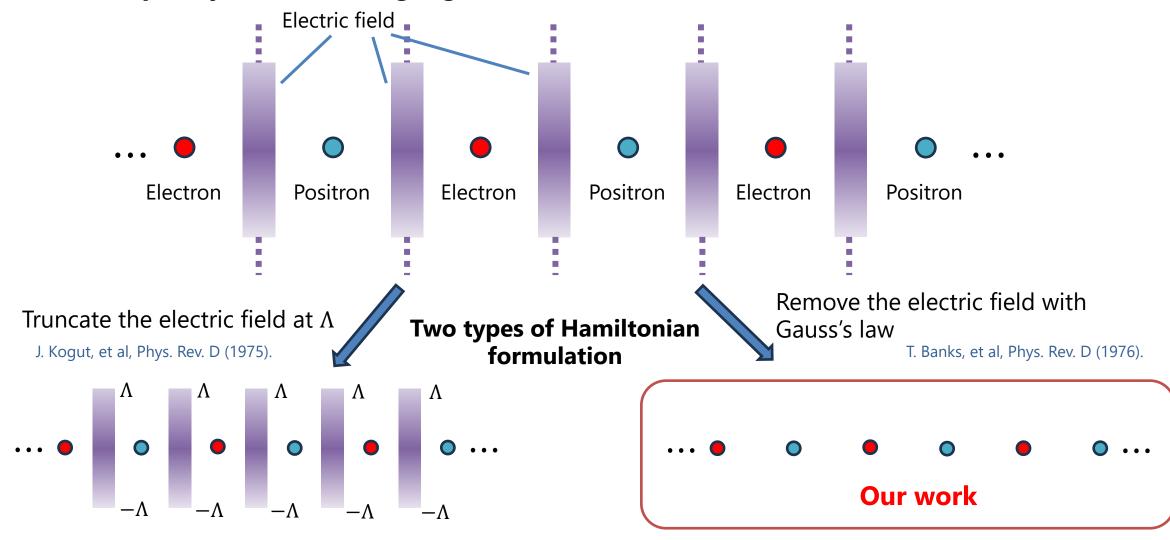
- Developing more efficient algorithms and frameworks are very important to harness the power of quantum.
- > First part: efficient simulation algorithm for Schwinger model and its applications.
- Second part: a novel quantum machine learning framework

First part: quantum algorithm for Schwinger model

K. Sakamoto, Hayata Morisaki, Junichi Haruna, Etsuko Itou, Keisuke Fujii, Kosuke Mitarai, "End-to-end complexity for simulating the Schwinger model on quantum computers", arXiv:2311.17388

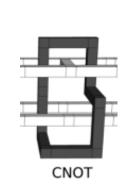
Schwinger model

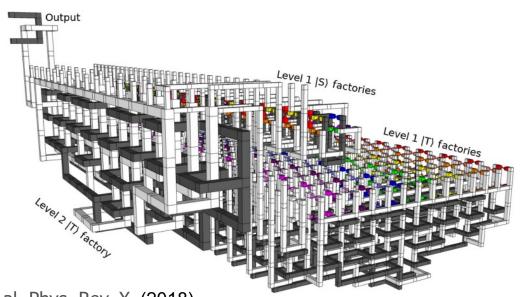
One of the simplest yet non-trivial gauge theories



The cost is estimated via number of T gates

- In FTQC setting, T gates are the most costly.
 - > FTQC usually allows {H, CNOT, T} gates, which are universal.
 - > H and CNOT gates are very easy, but T gates need large space-time cost.
 - > It is because of the structure of error-correction codes defined via commuting Pauli operators.





R. Babbush, et al, Phys. Rev. X, (2018).

Note added: recent works (Itogawa et al., arXiv: 2403.03991, Gidney et al., arXiv:2409.17595) might change the situation. Number of T gates, however, still roughly represents how many gates we need.

Previous works on Schwinger model for e^{-iHt}

The Hamiltonian formulation which does not have electric field

System size : NPrecision : ε

E. A. Martinez, et al, Nature 534, 516 (2016).

Evolution time: t

- N. H. Nguyen, et al, PRX Quantum 3, 020324 (2022).
 - Based on Trotter formula

Our work
$$\tilde{O}(N^4t + \log(1/\varepsilon))$$

 $O(N^{4.5}t^{1.5}/\varepsilon^{0.5})$

- The Hamiltonian formulation which has electric field
 - A. F. Shaw, et al, Quantum 4, 306 (2020). $\tilde{O}(N^{2.5}t^{1.5}/\varepsilon^{0.5})$
 - Based on Trotter formula
 - Provides rigorous cost analysis
 - Y. Tong, et al, Quantum 6, 816 (2022). $\tilde{O}(Nt \text{ polylog}(1/\varepsilon))$
 - The smallest query complexity at present
 - Probably needs a huge number of qubits
- > Our work improves in every factor from the previous Trotter-based one.
- > Compared to ones with electric field, our algorithm needs smaller number of qubits.

Block-encoding

Block-encoding of a Hamiltonian H is defined as,

$$U = |0^b\rangle\langle 0^b| \otimes H + \dots = \begin{pmatrix} H & \cdot \\ \cdot & \cdot \end{pmatrix}$$

We will see how to implement such U on the next page.

- \triangleright Here we assume $U^2 = I$. This holds for popular block-encoding implementations.
- ightharpoonup Let $R=2|0^b\rangle\langle 0^b|\otimes I-I\otimes I$; R adds phase -1 when first b qubits are not $|0\rangle$.
- > Surprisingly, the following holds:

$$(RU)^n = RU \cdots RURU = \begin{pmatrix} T_n(H) & \cdot \\ \cdot & \cdot \end{pmatrix}$$

where $T_n(H)$ is the Chebyshev polynomial.

- > Advantages:
 - ▶ Block-encoding U of H with error ϵ only requires $O(\log(1/\epsilon))$ gates in most cases. (Trotter expansion needs $\operatorname{poly}(1/\epsilon)$ gates.)
 - We can get any information about H with $T_n(H)$; Most functions can be efficiently approximated by linear combination of $T_n(x)$.

Block-encoding of Pauli-sum Hamiltonians

Assume Hamiltonian is decomposed as sum of Pauli operators $P \in \pm \{I, X, Y, Z\}^{\otimes n}$:

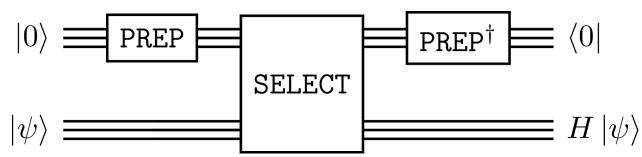
$$H = \sum_{l=0}^{L-1} a_l P_l$$

Furthermore, assume $a_i > 0$ and it is normalized such that $\sum_i a_i = 1$.

➤ Let the PREPARE operator PREP and SELECT operator SELECT be ones that satisfies:

$$PREP|0^{b}\rangle = \sum_{l=0}^{L-1} \sqrt{a_{l}}, SELECT(|l\rangle|\psi\rangle) = |l\rangle \otimes (P_{l}|\psi\rangle)$$

The following gives a block-encoding:



- \triangleright P and V can be implemented $O(L + \log 1/\epsilon)$ gates (using ancillary qubits). R. Babbush, et al, Phys. Rev. X, (2018)
- > This technique is called the linear combination of unitaries (LCU).

Our idea to efficiently implement block-encoding

> The Schwinger model Hamiltonian after Jordan-Wigner transformation looks like:

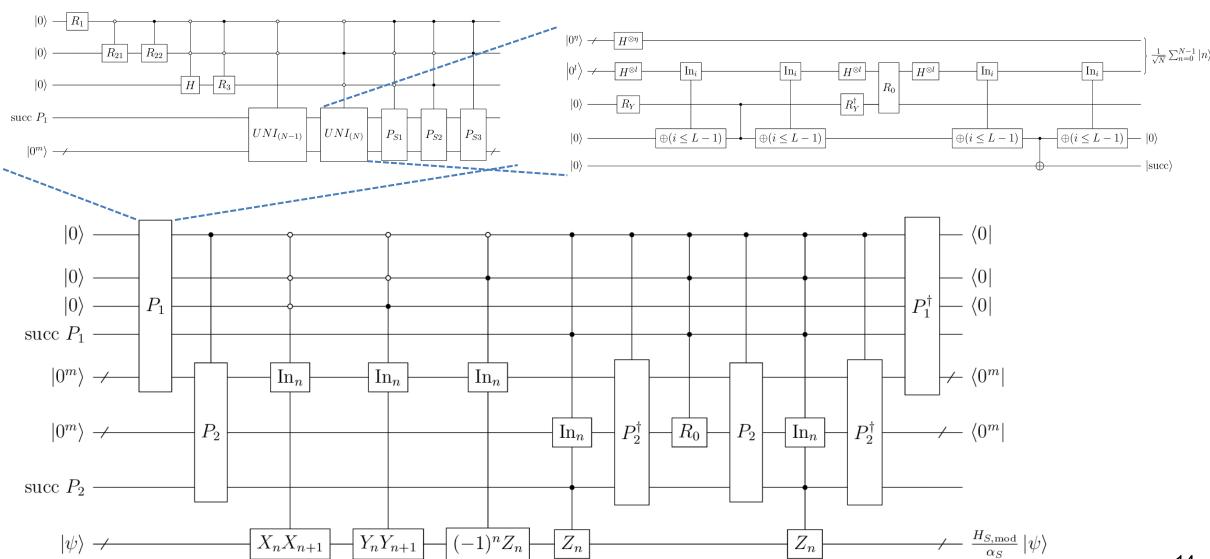
$$H_S = J \sum_{n=0}^{N-2} \left(\sum_{i=0}^n \frac{Z_i + (-1)^i}{2} + \frac{\theta_0}{2\pi} \right)^2 + \frac{w}{2} \sum_{n=0}^{N-2} \left(X_n X_{n+1} + Y_n Y_{n+1} \right) + \frac{m}{2} \sum_{n=0}^{N-1} (-1)^n Z_n$$

- > It has $O(N^2)$ terms, we naively need $O(N^2)$ gates to block-encode H_S .
- \triangleright Our strategy to realize it with O(N) gates:
 - ightharpoonup Uniform superposition states $\frac{1}{\sqrt{N}}\sum_{i=0}^{N-1}|i\rangle$ can be prepared efficiently with $O(\log N)$ T gates.

- > We can take a linear combination of the block-encodings via LCU.
- > Noting the above, group the terms as follows:

$$H_{S} = \underbrace{\left[\frac{J}{4} \sum_{n=1}^{N-1} \left(\sum_{i=0}^{n-1} Z_{i} \right)^{2} \right]}_{\text{n:even}} + \underbrace{\left[\frac{\theta}{2\pi} \sum_{n=1}^{N-1} \sum_{i=0}^{N-1} Z_{i} \right]}_{\text{n:even}} + \underbrace{\left[\frac{1}{2} + \frac{\theta}{2\pi} \right) \sum_{n=1}^{N-1} \sum_{i=0}^{N-1} Z_{i}}_{\text{n:odd}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} X_{n} X_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} Y_{n} Y_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} X_{n} X_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} Y_{n} Y_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} X_{n} X_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} Y_{n} Y_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} X_{n} X_{n} X_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} X_{n} X_{n} X_{n} X_{n} X_{n+1} \right]}_{\text{n:even}} + \underbrace{\left[\frac{w}{2} \sum_{n=0}^{N-2} X_{n} X$$

Quantum circuit for block-encoding looks like...



Resource estimates for computing $\langle vac|e^{-iHt}|vac \rangle$

- \triangleright $|vac\rangle = |1010 \cdots\rangle$ is the ground state of H_S for $J = \theta_0 = w = 0, m = m_0$, representing vacuum without any particle.
- $ightharpoonup \langle {\rm vac}|e^{-iHt}|{
 m vac}
 angle$ is vacuum persistent amplitude, representing the creation and annihilation of electron-positron pairs
- > Based on our block-encoding, how long does it take to compute it with FTQC?

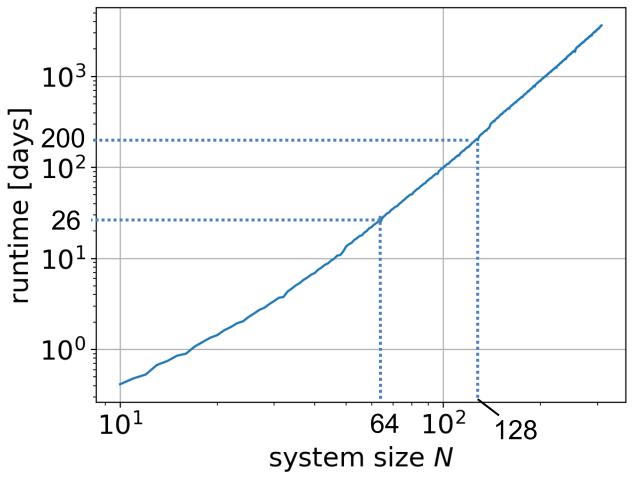
Resource estimate result - runtime

Parameters

- Precision (additive error) : $\varepsilon = 0.01$
- Evolution time : t = 4
- T gate consumption rate : 1MHz
- Lattice spacing : a = 0.2
- electron mass : m = 0.1
- $w = \frac{1}{2a} = 2.5$
- $J = \frac{g^2 a}{2} = 0.1$, (g = 1)
- $\theta_0 = \pi$

Examples

System size	Runtime [days]
64	26
128	200



Runtime for calculating the vacuum persistence amplitude.

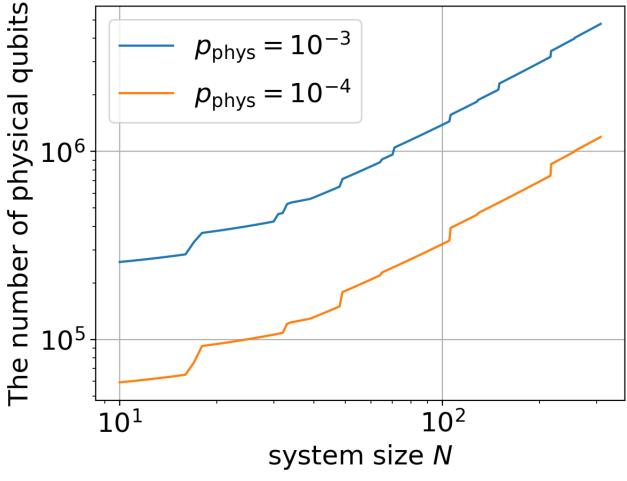
Resource estimate result: qubit requirements

Parameters

- Precision (additive error) : $\varepsilon = 0.01$
- Evolution time : t = 4
- Lattice spacing : a = 0.2
- electron mass : m = 0.1
- $w = \frac{1}{2a} = 2.5$
- $J = \frac{g^2 a}{2} = 0.1$, (g = 1)
- $\theta_0 = \pi$

Examples (N = 64)

Physical error rate	Physical pubits
10^{-3}	9×10 ⁵
10^{-4}	2×10 ⁵



The number of physical qubits for calculating the vacuum persistence amplitude.

Summary

Comparing resource to other applications

Condensed matter physics (e.g. Hubbard model)

N. Yoshioka, et al, arXiv:2210.14109, (2022)

Schwinger model

Condensed matter physics (e.g. Hubbard model)

N. Yoshioka, et al, arXiv:2210.14109, (2022)

T count: $\sim 10^8$ $\sim 10^{12}$ $\sim 10^{12}$

Technical contributions:

- An efficient block-encoding of the Schwinger model Hamiltonian
 - Decompose the Hamiltonian into several parts.
 - Use $O(\log^2 N)$ T gates for P, O(N) T gates for V, with a normalization factor of $O(N^3)$.
- End-to-end complexity for the Schwinger model

Future challenges:

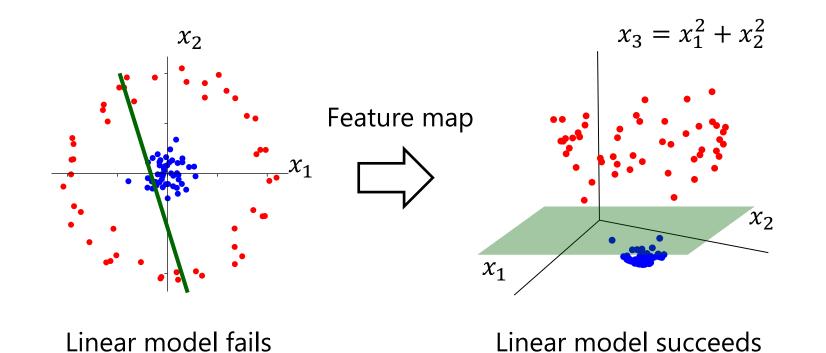
 More precise resource estimates. Maybe using libraries such as qualtran or Qiskit, which have implementations of reversible arithmetics.

A new quantum machine learning framework: Explicit quantum surrogate

Akimoto Nakayama, Hayata Morisaki, Kosuke Mitarai, Hiroshi Ueda, Keisuke Fujii, "Explicit quantum surrogates for quantum kernel models", arXiv:2408.03000

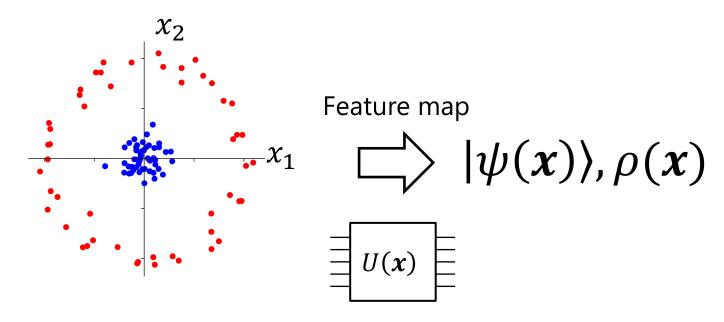
Feature map

Transform data x to $\phi(x)$ to extract "pattern" in the data.



Quantum feature

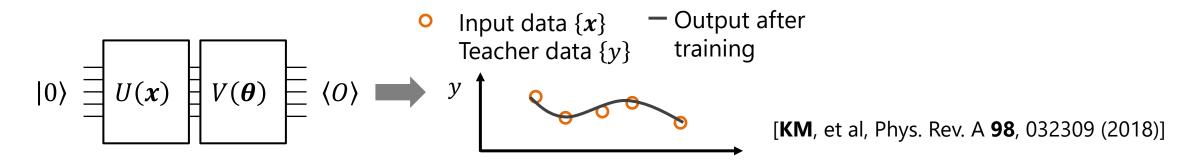
 \succ Map a data x to a quantum state $|\psi(x)\rangle$



- \triangleright Difficult to classically simulate $|\psi(x)\rangle$
 - → We can construct a model which cannot be treated with classical computers
- ➤ Note!: it doesn't mean there is practical advantage.
- Models based on quantum feature can be categorized into two major class: explicit models and implicit models

Explicit quantum models

 \triangleright Apply parameterized unitary $V(\theta)$ and use some expectation value as a prediction.



- \succ Training is performed by tuning θ via e.g. gradient decent.
- Advantage:
 - > Can use optimizers from neural networks, such as Adam.
 - \triangleright One training iteration needs only O(N) resource for N data.
- Disadvantage:
 - > Theoretical performance not guaranteed.

McClean et al., Nat. Comm. 9, 4612 (2018)

> Difficult optimization, barren plateau (gradient vanishes when using random initialization.)

Implicit quantum models

ightharpoonup Using $k(x_i,x_j)=\left|\left\langle \psi(x_i)\middle|\psi(x_j)\right\rangle\right|^2$ as a kernel function, rely on classical kernel techniques for constructing a model. Model in this case is represented by

$$y = \sum_{i=1}^{N} \alpha_i k(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i=1}^{N} \alpha_i |0\rangle = U(\mathbf{x}_i) = U^{\dagger}(\mathbf{x}_j) = \text{Prob. of } |0\rangle$$

- \succ Training is performed by tuning α via, e.g., solving linear system of equations.
- Advantage:
 - Convergence to global optimum guaranteed.
 - > Friendly to experiments, >20 qubits experiments are possible.
- Disadvantage:
 - \triangleright Needs at least $O(N^2)$ cost for training, O(N) cost for prediction.

So we thought, can we train a model implicitly and then convert it to explicit ones?

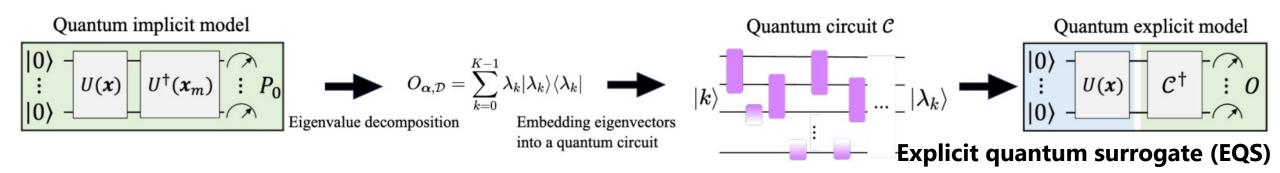
Implicit to explicit conversion

Algorithm

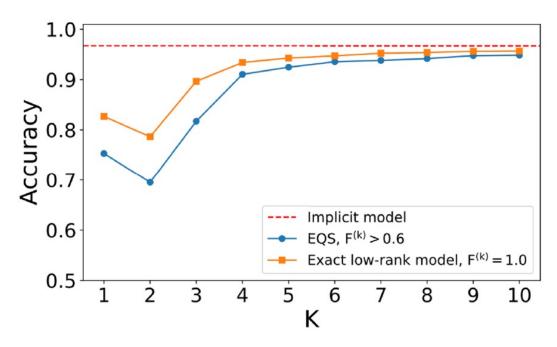
- 1. Train a quantum implicit model with your choice of quantum feature map U(x)
- 2. Diagonalize $O = \sum_i \alpha_i |\psi(\mathbf{x}_i)\rangle \langle \psi(\mathbf{x}_i)|$ and identify K important eigenvectors $|\lambda_k\rangle$.
- 3. Construct a circuit C that satisfies $C|k\rangle \approx |\lambda_k\rangle$ using AQCE algorithm [Shirakawa et al., Phys. Rev. Research 6, 043008 (2024)].

Notes

- > Step 2 can be done efficiently on a classical computer when given $\langle \psi(x_i) | \psi(x_j) \rangle$ from quantum, because rank $0 \le N$
- > AQCE algorithm brute-forcely searches possible circuits using ideas from tensor network.

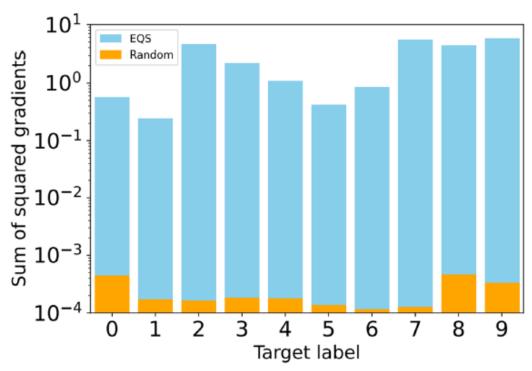


Numerics: Accuracy for MNISQ-MNIST dataset



- ✓ MNISQ dataset [Placidi et al., arXiv:2306.16627] is a dataset developed by us, which consists of quantum circuits that approximately encodes MNIST handwritten digits.
- \checkmark The conversion needs relatively small K and low fidelity (>0.6).
- ✓ Numerics demonstrate that we can suppress the prediction cost by this approach.

Numerics: EQS as an initialization strategy



- ✓ Motivation Random circuit initialization leads to barren plateau, but EQS constrction is not random.
 Can our approach mitigate the barren plateau?
- \checkmark Numerics show that magnitude of gradients are (EQS) \gg (Random initialization)
- ✓ EQS might open a way to mitigate the barren plateau.

My talk today

- > Developing more efficient algorithms and frameworks are very important to harness the power of quantum.
- > First part: efficient simulation algorithm for Schwinger model and its applications.
 - > We constructed algorithm based on block-encoding framework with detailed resource estimates.
 - \triangleright We need around 1 million physical qubits and for 10^{12} gates for ~100 site Schwinger model.
- > Second part: a novel quantum machine learning framework
 - > Converting trained implicit models to explicit models has various benefits: Shorter prediction time, potential to mitigate barren plateau, etc.

Some ads

Qcoder: competitive quantum programming

- An IPA MITOU project (for which I am doing technical adviser)
- Competitive programming using qiskit.

An example problem from the latest contest:

Problem Statement

You are given an integer n. Implement the operation of preparing the state $|\psi\rangle$ from the zero state on a quantum circuit qc with n qubits.

The state $|\psi
angle$ is defined as

$$|\psi
angle = rac{1}{\sqrt{n}}(|10...0
angle_n + |010...0
angle_n + \cdots + |0...01
angle_n).$$

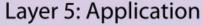
Constraints

- $2 \le n \le 15$
- The <u>circuit depth</u> must not exceed 10.
- Global phase is ignored in judge.

Access **qcoder.jp**

We are conducting full-stack research

Layers for practical quantum computing



Quantum algorithms and interface to classical user

Application measurement Application qubit

Application gates

Layer 4: Logical

Construct a substrate supporting universal quantum computation

Logical measurement

Logical qubit

Logical CNOT

Injected ancilla state

Layer 3: Quantum error correction

QEC corrects arbitrary system errors if rate is below threshold

Measure Z-basis Measure X-basis Virtual gubit Virtual 1-qubit gate

1

Layer 2: Virtual

Open-loop error-cancellation such as dynamical decoupling

QND readout Physical qubit

Host system 1-

1-Qubit gate

2-Qubit gate

Virtual

CNOT

Layer 1: Physical

Hardware apparatus including physical qubits and control operations

Chemistry: Prof. Mizukami

Many-body/cond-mat: Prof. Ueda

Machine learning: Mitarai

Mitarai, Prof. Fujii

Prof. Fujii

Prof. Negoro, Miyoshi, Ogawa with QuEL, quantum middleware startup

Superconducting qubits: Prof. Negoro Ion trap: Prof. Toyoda

Phys. Rev. X **2**, 031007 (2016)

Current quantum computer system @ OU

```
User
                    OpenQASM (quantum assembly)
AWS (authentication, data storage, etc.)
                   OpenQASM (quantum assembly)
  Edge server (transpiling/compiling)
                    Transpiled QASM
     Control system (middleware)
                    Microwave pulses
             Qubit chip
```

```
OPENQASM 2.0;
include "qelib1.inc";
qreg q[4];
cx q[0],q[1];
rz(-0.09609732239232643) q[1];
cx q[0],q[1];
cx q[1],q[2];
rz(-0.06088586113564654) q[2];
cx q[1],q[2];
...
```


We are open to collaborate!

Hosting/sending students/researchers is always welcome.

Contact me at mitarai.kosuke.es@osaka-u.ac.jp