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Solving CFTs

CFT spectrum

Correspondence principle:

“The large charge sector of
a CFT can be studied using
semiclassical methods”

>
Q Charge

Spin
Source: [L. V. Delacretaz, SciPost Phys. 9 (2020) 3, 034]

This talk: a semiclassical method for the scaling dimension A of heavy
singlet operators in CFT.



The critical Ad* theory

We study the A®*theory in d=4-¢ dimensions where it features an infrared
Wilson-Fisher fixed point
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Consider the scaling dimension A, of the ®" composite operators:
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We bring the field insertions into the exponent and rescale ¢ — /no
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Semiclassical expansion
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For large n the path integral is dominated by the extrema of S g«

Saddle-point expansion:

1/n “counts loops” and is our expansion parameter.

C, : first quantum correction

S =S(¢) + %((b — $0)°S" () + ...

Every C, gets contributions from an infinite series of Feynman diagrams.
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Free field theory and Weyl map

Consider A=0. The saddle point solution is
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and yields the obvious result: A, = (5 — 1)

The solution becomes very easy after mapping the theory onto a cylinder:
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This is a solution of the harmonic oscillator: _qb +0=0 coupling to
dt? curvature

The scaling dimensions become the energy spectrum on the cylinder

(state-operator correspondence) " o
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The anharmonic oscillator

We map the theory onto the cylinder. In the interacting case. one has to
solve the quartic anharmonic oscillator
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Supplemented by the Bohr-Sommerfeld condition
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The leading coefficient of the semiclassical expansion is the classical energy
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Evaluated on the saddle point solution with period 7 .
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The solution

The saddle-point solution is a “cosine” Jacobi elliptic function cn(wt |m)
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By plugging this solution into T,, we obtain C,
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where the modulus “m” is a nontrivial function of the product “An”.
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This result also holds in the O(N) A®* model for the operators: (qﬁaqb@)n/Q

Let’'s analyze the result!



S m a | ‘ ”)\n 77 Many-loops — Many-legs

By expanding the result for small An one reproduces perturbation theory
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Large “An”
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This is the same behavior of the spectrum of
charged operators with charge n for which itcan .

be shown to be universal and nonperturbative.
[S. Hellerman, D. Orlando, S. Reffert, M. Watanabe (2015)] .
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The O(N) &3 theory in d=6-¢
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Wilson-Fisher fixed point: A" =3 N ( +—t A2 + +O(e))

This CFT is non-perturbatively unstable due to instanton solutions giving

rise to a nonzero imaginary part in the CFT data.
[L. Fei, S. Giombi, I. R. Klebanov (2014)]

We consider the scaling dimension A, of the n" composite operators.
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Semiclassical expansion: | Ap, =n E -
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The anharmonic oscillator

Now one has to solve the cubic anharmonic oscillator
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Small “A*n”

Again, by expanding the result around A?n=0 we reproduce perturbation theory.
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Large “A?n”
The large A%n regime reveals the nonperturbative instability of the theory.
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The saddle point equation has no real solution unless

Above this value the scaling dimensions become complex
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The two complex conjugate solutions correspond to a pair of complex CFTs.

Moreover, we again have d
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Outlook

We proposed a novel method to determine the scaling dimensions of
families of neutral composite operators in CFT

#& Calculation of the leading quantum correction C,.
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#& Non-perturbative EFT description at large n?
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