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Equations of fluid dynamics

Burgers equation ou+ w-V)u=nV>u [Bateman 1915] [Burgers 1948
< + pressure gradient

Navier —Stokes equation ou—+u-V)yu= vp -n Veu,
o,

< + electromagnetic field

(VXB)XB Vp ,

magneto-hydrodynamics (MHD)  du + (u - V)u = Fn Veu,
P P




Burgers equation

One-dimensional Burgers equation Linear regime: dissipative
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Burgers equation

One-dimensional Burgers equation Nonlinear regime — shock wave
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Solving nonlinear Burgers equation

One of the difficulties of integrating non-linear partial differential equations:

coupling across different scales, need wide dynamical range of scales

— (Classical computation is demanding,

but hopefully guantum computer helps (?)

However, even for quantum computing,

solving non-linear problem is not straightforward. M




Hamiltonian simulation does not work?

N, = 2" spatial grids, fluid velocity u;
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Quantum state as a fluid configuration

n, qubits state
) == ) wlj) j) = 0110---01)
J
—iHT d
|lu(t = 0)) U=e lu(t=1T)) solves zE\u) = H|u). [Loyd 199], ...

du,
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quantum operation: unitary ( — = A, A:real, antlsymmetnc>



Incorporating nonlinearity from the beginning

N, = 2" spatial grids,

j=1,,N

X

Quantum state as a fluid configuration

W) = ) [ 1))

| W(r = 0))

fluid velocity U;
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site j

n, qubits state
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quantum operation: unitary
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Cole—Hopf transformation ;.. s coe 1051

One-dimensional Burgers equation
ou

——+uod.u=nou
ot =IO

oy
— — no?
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inear, well-suited for quantum computation

Let us solve the discretized heat equation in terms of 0,y.

, d
[op) =N Z 7). - W) = 0dw(x_y) — 20p(x;) + dw(x, ),
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Quantum algorithm (first part)

Complexity scales as ~ n, = log N,
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Quantum algorithm (first part)

Complexity scales as ~ n, = log N,
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We are Interested In statistical properties in turbulence

full configuration energy decay

u(x, T)

porobability density distribution
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ook for universal properties of turbulence
IN stochastic properties by measuring

(u(x = Qu(x = r)>, <u(x = Qu(x = rl)u(x — 1’2)>,




Two-point function

We have a quantum state |d,w(r)) as a “solution”

PP (r = pAx) := (u(xX)u(x + r))
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774
summation of increment operators (unitaries)

We can measure (Py ) and (P ") by the ,

Knill+ 2007]
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Three-point function

We have a quantum state |d,w(r)) as a “solution”

PO(r, = p,Ax, 1, = p,Ax) := (u()ulx + r)ulx + r,))
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(If we coarse-grain the solution, we can avoid the N scaling.)



n-point function

For even n, ~or odd n,
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Complexity in total

Quantum (2-pt function)

X

low(D)|| ¢ e

0w )| Tn, n}

roughly ~ @( ) gates In total — exponential speedup!

Classical (naive estimate)
(x = y)?
47

e
to integrate (7, x) = de K(z,x,y)yp(y), K(z,x,y) = ,
(4rt)l/2

it costs O(N,) . Since {(u(z,0)u(r, x)) needs values at N, grid points, O(N?) in total.



Summary



Summary

Two Issues toward statistics of Burgers turbulence
- How to address nonlinearity”?

We let a quantum state have the information nonlinearly (Cole —Hopf
transformation) in its amplitude.

- What information to extract from quantum states as the solution”?

Statistical quantities ~ expectation values of sparse matrices can be measured

— Exponential speedup with our FTQC algorithm.






