Quantum algorithm for statistical quantities in Burgers turbulence

2024/12/4, High Energy Physics in the Quantum Era Fumio Uchida (KEK)

[FU, Yamazaki, Fujisawa, Miyamoto, Yoshida, ongoing]

1/11

How to extract useful information? **Quantum algorithm for statistical** quantities in Burgers turbulence How to solve non-linear differential equations?

2024/12/4, High Energy Physics in the Quantum Era Fumio Uchida (KEK)

[FU, Yamazaki, Fujisawa, Miyamoto, Yoshida, ongoing]

Equations of fluid dynamics

$\partial_t u + (u \cdot \nabla) u = \eta \nabla^2 u$ [Bateman 1915] [Burgers 1948]

$$-(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}=-\frac{\nabla p}{\rho}+\eta\,\nabla^2\boldsymbol{u},$$

$$-(\boldsymbol{u}\cdot\nabla)\boldsymbol{u} = \frac{(\nabla\times\boldsymbol{B})\times\boldsymbol{B}}{\rho} - \frac{\nabla p}{\rho} + \eta \nabla^2\boldsymbol{u},$$

. . .

. . .

Burgers equation

One-dimensional Burgers equation

Linear regime: dissipative

Burgers equation

One-dimensional Burgers equation

Nonlinear regime → shock wave

Solving nonlinear Burgers equation

One of the difficulties of integrating **non-linear** partial differential equations: coupling across different scales, need wide dynamical range of scales

Classical computation is demanding, \rightarrow but hopefully quantum computer helps (?)

However, even for quantum computing, solving non-linear problem is not straightforward.

Hamiltonian simulation does not work?

$$N_x = 2^{n_x}$$
 spatial grids, flut
 $j = 1, \dots, N_x$

Quantum state as a fluid configuration

$$|\mathbf{u}\rangle := \mathcal{N}\sum_{j} u_{j}|j\rangle$$

$$|u(t = 0)\rangle \qquad \qquad U = e^{-iHT} \qquad |u(t = T)\rangle \qquad \text{solves } i\frac{d}{dt}|u\rangle = H|u\rangle. \text{ [Loyd 1996], ...}$$

quantum operation: unitary
$$\left(\frac{du_j}{dt} = A_{jk}u_k, \text{ A: real, antisymmetric}\right)$$

 n_x qubits state $|j\rangle = |0110\cdots01\rangle$

Incorporating nonlinearity from the beginning

$$N_x = 2^{n_x}$$
 spatial grids, flut $j = 1, \dots, N_x$

Quantum state as a fluid configuration

$$|\Psi\rangle := \mathcal{N}\sum_{j} f(u_{j}) |j\rangle, \quad f:$$
 nonlinea

$$|\Psi(t=0)\rangle$$
 — $U = e^{-iHT}$ $|\Psi(t=T)\rangle$ solves $i\frac{d}{dt}|\Psi\rangle = H|\Psi\rangle$.

quantum operation: unitary

nonlinear in terms of *u*

Cole – Hopf transformation [Hopf 1950] [Cole 1951]

One-dimensional Burgers equation

$$\frac{\partial u}{\partial t} + u \,\partial_x u = \eta \,\partial_x^2 u$$
$$\psi = \exp\left(-\frac{1}{2\eta} \int^x dy \,u(y)\right) \left(\frac{\partial \psi}{\partial t} = \eta \partial_x^2 u\right)$$

linear, well-suited for quantum computation

Let us solve the discretized heat equation in terms of $\partial_x \psi$.

$$|\partial_x \psi\rangle := \mathcal{N} \sum_j \partial_x \psi(x_j) |j\rangle$$

$$u = -2\eta \frac{\partial_x \psi}{\psi}$$

Ψ

$$\frac{d}{d\tau}\partial_x \psi(x_j) = \partial_x \psi(x_{j-1}) - 2\partial_x \psi(x_j) + \partial_x \psi(x_{j+1})$$

Quantum algorithm (first part)

Complexity scales as $\sim n_x = \log N_x$

an oracle assumed e.g., QRAM [Giovannetti+ 2008], ...

$$\left|\partial_{x}\boldsymbol{\psi}(\tau=T)\right\rangle$$

high-resolution and nonlinearity incorporated ``solution"

Quantum algorithm (first part)

Complexity scales as $\sim n_r = \log N_r$

an oracle assumed e.g., QRAM [Giovannetti+ 2008], ...

$$|\partial_x \psi(\tau = T)\rangle$$
 —

high-resolution and nonlinearity incorporated "solution", but

what measurement do we need?

We are interested in statistical properties in turbulence

Look for universal properties of turbulence in stochastic properties by measuring

 $\langle u(x=0)u(x=r)\rangle, \langle u(x=0)u(x=r_1)u(x=r_2)\rangle, \cdots$

Two-point function

We have a quantum state $|\partial_x \psi(\tau)\rangle$ as a "solution" $P^{(2)}(r = \rho \Delta x) := \langle u(x)u(x+r) \rangle$

$$= N_x^{-1} \sum_{k} u_k u_{k+\rho}$$

= $N_x^{-1} \| u \|^2 \langle u | M^{(2)}$

 $\psi(x) \sim \overline{\psi} + \delta \psi(x)$ in late time $u(x,\tau) \sim \frac{-2\eta}{\bar{\psi}} \partial_x \psi(x,\tau)$ (1) prefactor

 $\simeq N_x^{-1} \| \boldsymbol{u} \|^2 \langle \partial_x \boldsymbol{\psi} | M^{(2)}$ $M^{(2)}$

summation of increment operators (unitaries)

$$\frac{P^{(2)}(r)}{P^{(2)}(0)} = \frac{\langle P \rangle}{P^{(2)}(0)}$$

$$(\rho) | \boldsymbol{u} \rangle$$

$${}^{(2)}(\rho) \mid \partial_{x} \boldsymbol{\psi} \rangle$$
$${}^{(\rho)} = \frac{1}{2} \left(P_{N_{x}}^{\rho} + P_{N_{x}}^{-\rho} \right)$$

We can measure $\langle P_{N_r}^{\rho} \rangle$ and $\langle P_{N_r}^{-\rho} \rangle$ by the **overlap estimation algorithm**, [Knill+ 2007] $\frac{2^{\rho}}{N_x} + \langle P_{N_x}^{\rho} \rangle}{2} \sim \mathcal{O}\left(\frac{n_x^2}{\epsilon}\right) \text{ gates } + \sim \mathcal{O}\left(\frac{1}{\epsilon}\right) \text{ queries to } O_{\partial_x \psi_\tau}$

Three-point function

We have a quantum state $|\partial_x \psi(\tau)\rangle$ as a "solution" $P^{(3)}(r_1 = \rho_1 \Delta x, r_2 = \rho_2 \Delta x) := \langle u(x)u \rangle$

> $= N_x^{-1} \sum_{x}$ $\simeq N_{x}^{-1} \|$

We can measure
$$\langle P^{\rho}_{N_x} \rangle$$

$$\frac{P^{(3)}(r_1, r_2)}{P^{(3)}(0, 0)} = \langle M^{(3)}(\rho_1, \rho_2) \rangle \sim \mathcal{O}\left(\frac{N_x^{1/2}}{\epsilon}\right) \text{ gates } + \sim \mathcal{O}\left(\frac{N_x^{1/2}}{\epsilon}\right) \text{ queries to}$$

$$\begin{aligned} u(x + r_1)u(x + r_2) \\ & |U^{(3)}\rangle \coloneqq \frac{|u\rangle^{\otimes 2} \otimes |0\rangle + |u\rangle \otimes |0\rangle \otimes |1\rangle}{\sqrt{2}} \\ & = \sum_{j,k} \frac{u_{-j}u_{-k}}{\sqrt{2}} |j,k,0\rangle + \sum_{l} \frac{u_{-l}}{\sqrt{2}} |l,0,1\rangle \\ & = \sum_{k} \frac{u_{-j}u_{-k}}{\sqrt{2}} |j,k,0\rangle + \sum_{l} \frac{u_{-l}}{\sqrt{2}} |l,0,1\rangle \end{aligned}$$

 $\mathcal{O}(N_x^{1/2})$ prefactor $M^{(3)}$: sparse \leftarrow block encoding

and $\langle P_{N_n}^{-\rho} \rangle$ by the **overlap estimation algorithm**, [Knill+ 2007]

(If we coarse-grain the solution, we can avoid the $N_x^{1/2}$ scaling.)

n-point function

$$\frac{P^{(n)}(r_1, \cdots)}{P^{(n)}(0)} = \langle M^{(n)}(\rho_1, \cdots) \rangle,$$
$$M^{(n)}: \text{ sparse}$$
We can measure this by applying block-encoding + overlap estimat

$$\sim \mathcal{O}\left(\frac{N_x^{n/2-1}}{\epsilon}\right)$$
 gates + $\sim \mathcal{O}\left(\frac{nN_x^{n/2-1}}{\epsilon}\right)$ queries to O

Complexity in total

Quantum (2-pt function)

roughly ~
$$\mathcal{O}\left(\frac{\|\partial_x \psi(0)\|}{\|\partial_x \psi(T)\|} \frac{Tn_x}{\epsilon} + \frac{n_x^2}{\epsilon}\right)$$

Classical (naive estimate)

to integrate
$$\psi(\tau, x) = \int dy \, K(\tau, x, y) \psi_0(y), \quad K(\tau, x, y) = \frac{e^{-\frac{(x-y)^2}{4\tau}}}{(4\pi\tau)^{1/2}},$$

gates in total \rightarrow exponential speedup!

it costs $\mathcal{O}(N_x)$. Since $\langle u(\tau,0)u(\tau,x)\rangle$ needs values at N_x grid points, $\mathcal{O}(N_x^2)$ in total.

Summary

Summary

- Two issues toward statistics of Burgers turbulence
 - How to address nonlinearity?

 - transformation) in its amplitude.
 - What information to extract from quantum states as the solution?
- \rightarrow Exponential speedup with our FTQC algorithm.

We let a quantum state have the information nonlinearly (Cole—Hopf

Statistical quantities ~ expectation values of sparse matrices can be measured