Improved quantum algorithm for calculating eigenvalues of differential operators and its application to estimating the decay rate of the perturbation distribution tail in stochastic inflation (arXiv:2410.02276) Workshop "High Energy Physics in the Quantum Era"

Dec 03, 2024

Koichi Miyamoto

Center for Quantum Information and Quantum Biology (QIQB), Osaka University

Collaborator: Yuichiro Tada (Nagoya University)

1. Improved quantum algorithm for calculating eigenvalues of differential operators

Eigenvalues of differential operators

n Solving partial differential equations is a major target of quantum computing

▶ e.g.) Heat equation:
$$
\frac{\partial}{\partial t} f(t, x) = \Delta f(t, x), \ \Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
$$

- \geq Quantum algorithms to "solve" a PDE[†], which output a quantum state encoding the solution in amplitudes: $|f\rangle = \sum_i f(x_i)|i\rangle^{\dagger}$ (x_i : *i*th grid point)
- \triangleright Extracting the entire function from $|f\rangle$ takes a large complexity. We often try to extract a few quantities characterizing f .
- \blacksquare How about targeting such quantities from the beginning?

ØFocus on **the eigenvalues of the differential operator** ℒ

$$
\checkmark
$$
 e.g.) $\mathcal{L}f = \lambda f, \lambda \in \mathbb{R}$

 \checkmark Important quantities that characterize the behavior of the solution

https://commons.wikimedia.org/wiki/ Category:Drum_vibration_animations

† Cao+, New J. Phys. 15 013021 (2013); Linden+, Commun. Math. Phys. 395, 601 (2022); Jin+, PRA 108, 032603 (2023) ...etc ‡ The normalization factor is omitted.

A common way: finite difference method

 \blacksquare Set grid points in the space and approximate derivatives by the **finite difference method** (FDM)

▶ e.g., central diff.
$$
\frac{\partial}{\partial x_i} f(\mathbf{x}) \simeq \frac{1}{2h} (f(\mathbf{x} + h\mathbf{e}_i) - f(\mathbf{x} - h\mathbf{e}_i))
$$
 †

n This converts the differential op. \mathcal{L} into a matrix L , then we apply some method for matrix eigenvalue problem to L

e.g.,
$$
\mathcal{L} = \frac{\partial^2}{\partial x^2} \rightarrow L = \begin{pmatrix} -2/h^2 & 1/h^2 & & \\ 1/h^2 & -2/h^2 & 1/h^2 & \\ & \ddots & \ddots & \ddots & \\ & & 1/h^2 & -2/h^2 & 1/h^2 \\ & & & 1/h^2 & -2/h^2 \end{pmatrix}
$$

n But FDM suffers from the curse of dimensionality

 \triangleright In d-dim cases, if we set $n_{\rm gr}$ grid points in each direction, L is $n_{\rm gr}^d \times n_{\rm gr}^d$ \rightarrow for large d, intractable in classical computing!

 \dagger \mathbf{e}_i : the unit vector in the *i*th direction

Previous works

- \blacksquare Quantum algorithms can perform exponentially large matrix calculations \triangleright e.g., HHL for matrix inversion: O (poly log N) complexity for $N \times N$ matrices
- \blacksquare In fact, some works in the 2000st proposed quantum algorithms for calculating differential op. eigenvalues, based on that for matrix eigenvalues[#]
	- \triangleright But, not consider multi-dimensional cases or rigorously evaluate the dependence of complexity on d
	- \triangleright No paper since then, so recent progress in quantum algorithms has not been incorporated
- Let's improve the quantum algorithm using state-of-the-art techniques such as **block encoding** & **quantum singular value transformation**!

† Szkopek et al., PRA 72, 062318 (2005); Papageorgiou et al., Quantum Inf. Process. 4, 87 (2005); Bessen, J. Complex. 22, 660 (2006) ‡ Abrams & Lloyd, PRL 83, 5162 (1999)

Block encoding & Quantum singular value transformation

- \blacksquare Block encoding: embed a general matrix into the upper-left block of a unitary $U_A =$ ∗ ∗ ∗
	- \triangleright If A is sparse and we have a quantum circuit to access A's entries $O_A^{\text{ent}}|i\rangle|j\rangle|0\rangle = |i\rangle|j\rangle|A_{ij}\rangle$, we can construct a block-encoding of A efficiently[†]
- Quantum singular value transformation (QSVT)+
	- ≻Technique to construct a block-encoding $U_{g_{SV}(A)} = \begin{pmatrix} g_{SV}(A) & * \\ * & * \end{pmatrix}$ ∗ ∗ of $g_{\mathrm{SV}}(A)$, which is given by transforming A's singular values σ_i by a function g : $A=V$ σ_1 σ_2 ⋱ $W^{\dagger} \rightarrow g_{SV}(A) = V$ $g(\sigma_1)$ $g(\sigma_2)$ ⋱ W^{\dagger} $(V, W:$ unitary)

 \triangleright enables various operations related to A

† Gilyén et al., STOC 2019 pp. 193-204; strictly, we need a few other oracles.

Our quantum algorithm: problem setting

 \blacksquare Consider operators of the Sturm–Liouville type $\mathcal{L} = -\sum_{i=1}^d$ $\begin{matrix} d & \partial \end{matrix}$ ∂x_i a_i ∂ ∂x_i + a_0 $(a_0, a_1, \ldots, a_d : \mathcal{D} \rightarrow \mathbb{R}_+$ on $\mathcal{D} \coloneqq (U, L) \times \cdots (U, L) \subset \mathbb{R}^d$

 \triangleright includes Laplacian Δ , (a part of) Fokker-Planck, the problem in stochastic inflation considered later, and so on

 \triangleright We impose the Dirichlet boundary condition ($f = 0$ on ∂D)

 \triangleright All the eigenvalues are positive

Our quantum algorithm: finite-difference approx.

Set n_{gr} points at equal intervals of h in each direction and approximate \mathcal{L} ast $(\mathbf{x}_j^{\text{gr}}: \text{grid point in } \mathcal{D} \text{ labeled by } \mathbf{j} = (j_1, ..., j_d) \in \{1, ..., n_{\text{gr}}\}^{\times d}$) $Lf(\mathbf{x}_j^{\text{gr}}) \approx \sum_{i=1}^d \frac{-1}{h^2}$ $\frac{1}{h^2}\Big[a_i(\mathbf{x_j^k})\Big]$ $\mathbf{g}_{\mathbf{i}}^{\text{gr}} + \frac{h}{2} \mathbf{e}_{i} f(\mathbf{x}_{\mathbf{j}}^{\text{gr}} + h \mathbf{e}_{i}) - \left(a_{i}(\mathbf{x}_{\mathbf{j}}^{\text{gr}} + \frac{h}{2} \mathbf{e}_{i}) + a_{i} (\mathbf{x}_{\mathbf{j}}^{\text{gr}} - \frac{h}{2} \mathbf{e}_{i}) \right) f(\mathbf{x}_{\mathbf{j}}^{\text{gr}})$ $+a_i(\mathbf{x}_j^{\text{gr}} - \frac{h}{2}e_i)f(\mathbf{x}_j^{\text{gr}} - h e_i)\Big] + a_0(\mathbf{x}_j^{\text{gr}})$

n By this, *L* is converted into Hermitian $L \in \mathbb{R}^{N_{\text{gr}} \times N_{\text{gr}}}$ $(N_{\text{gr}} = n_{\text{gr}}^d$: total # of grid points)

■ When $n_{\rm gr} \to \infty$, L's eigenvalues λ_k^L converge to L's eigenvalues $\lambda_k^{\, \pm}$ $\left| \lambda_k^L - \lambda_k \right| = O\left(\frac{1}{n^2} \right)$ $\overline{n^2_\text{gr}}$

† Larsson and Thomée, "Partial differential equations with numerical method" (2003) ‡ Kuttler, SIAM J. Numer. Anal., 7, 206 (1970)

Our quantum algorithm: find the first singular value

Now, L is Hermitian and positive-definite, so L's eigenvalue = L's singular value

 \blacksquare We are often interested in the first (=smallest) eigenvalue of $\mathcal L$

 \blacksquare We use a QSVT-based algorithm to find the first eigenvalue of a matrix[†]

 \triangleright (informal) Given a block-encoding U_H of a Hermitian H and a vector $|v\rangle^{\ddagger}$ that overlaps the first eigenvector $|\psi_1\rangle$ of H well (i.e., $|\langle \psi_1 | \nu \rangle|$ is large), we find an ϵ -approx. of H's first eigenvalue λ_1 with $\tilde{O(||H||/\epsilon)}$ queries to U_H

Ø**Not dependent on 's size**

ØOutline : ・ Using QSVT with a step-function, we can divide eigenvalues smaller/larger than threshold λ_{th}

• Binary search finds λ_1

† Lin and Tong, Quantum 4, 372 (2020) ‡ Strictly, suppose that we are given a quantum circuit to generate a quantum state with such a state vector.

Our quantum algorithm: complexity

Nain theorem (informal)

 \triangleright Given quantum circuits O_{a_i} to compute the coefficient functions a_i $\langle O_{a_i} | \mathbf{x} \rangle | 0 \rangle = | \mathbf{x} \rangle | a_i(\mathbf{x}) \rangle$ and a trial function $f_1: \mathcal{D} \to \mathbb{R}$ that overlaps the first eigenfunction f_1 well $\int_{\mathcal{D}} f_1(\mathbf{x}) \tilde{f}_1(\mathbf{x}) d\mathbf{x} \geq \gamma,$ we find an ϵ -approx. of \mathcal{L}' s first eigenvalue λ_1 with $\tilde{O}(d^3/\gamma \epsilon^2)$ queries to O_{a_i} 's.

 \blacksquare Polynomial complexity with respect to d

Regarding the dependency on ϵ , compared to Szkopek et al. (2005) ($\tilde{\theta}$ (1/ ϵ^3)), our algorithm makes an improvement.

† Strictly, suppose that we are given a quantum circuit to generate a quantum state that encodes \tilde{f}_1 in the amplitudes.

2. Application to estimating the decay rate of the perturbation distribution tail in stochastic inflation

Stochastic inflation

■ Probabilistic framework to analyze inflationary perturbations[†]

 \triangleright dynamics of inflatons $\boldsymbol{\phi} = (\phi_1, ..., \phi_d)$ (coarse-grained on a large scale[‡]) $d\phi_i = -\frac{1}{n}$ $\frac{1}{v(\boldsymbol{\phi})} \partial_{\boldsymbol{\phi}_i} v(\boldsymbol{\phi}) dN + \sqrt{2v(\boldsymbol{\phi})} dW_i$

 $(v = V/24\pi^2, V:$ inflatons' potential, W_i : Wiener process, $M_{\rm Pl}$ is set to 1)

 \triangleright e-fold N: time variable (indicating how much the Universe has expanded)

Density perturbation = δN (roughly speaking)

 \triangleright Inflation occurs while ϕ is rolling in a flat region of V, then ends when ϕ reaches a steep region

 \triangleright δN : spatial fluctuation of the duration of inflation

 \triangleright long/short duration \rightarrow large/small expansion \rightarrow low/high density

† For a review, see Cruces, Universe 8, 334 (2022) ‡ Supper Hubble scale

Eigenvalue problem in stochastic inflation

- \blacksquare If inflatons go through a very flat region (e.g., inflection point), random movement dominates slow-roll
	- \rightarrow **Fat tail** in the probability distribution of density perturbations
	- \rightarrow primordial black holes
- **n** Conditioned that inflatons are at ϕ at some time, the probability density of N , e-fold to the end of inflation, obeys the adjoint Fokker-Plack eq. $\partial_{\mathcal{N}} P(\mathcal{N}|\boldsymbol{\phi}) = \mathcal{L}_{\text{FP}}^{\dagger} P(\mathcal{N}|\boldsymbol{\phi}), \ \mathcal{L}_{\text{FP}}^{\dagger} = \sum_{i=1}^{d} \left(-\frac{\partial_{\phi_i} v}{v} \right)$ $\frac{\partial_i^{\nu}}{\partial \phi_i} \partial_{\phi_i} + \nu \partial_{\phi_i}^2$
- Eigenvalues of $\mathcal{L}_{\text{FP}}^{\dagger}$ = decay rate of $P(\mathcal{N}|\boldsymbol{\phi})$ w.r.t. \mathcal{N} \Rightarrow If $\mathcal{L}_{\text{FP}}^{\dagger}$ has small eigenvalues, $P(\mathcal{N}|\boldsymbol{\phi})$ may have a fat tail!

Vennin, arXiv:2009.08715

Applying our quantum algo to find the eigenvalue of $\text{ } \mathcal{L}_{\text{FP}}^{\text{T}}$

- \blacksquare d may be large (multifield inflation) \rightarrow classically intractable
- Our quantum algorithm can be applied
	- $\triangleright \mathcal{L}_{FP}^{\dagger}$ is not of the Strum-Liouville type, but can be transformed to $\widetilde{\mathcal{L}_{FP}^{\dagger}}$ of that type with the same eigenvalues
- **I** Issue: Can we choose a trial function \tilde{f}_1 overlapping the first eigenfunc f_1 well?
	- $\mathcal{L}\left|\int_{\mathcal{D}} f_1(\mathbf{x}) \tilde{f}_1(\mathbf{x}) d\mathbf{x}\right|$ should be as large as possible
	- \triangleright But we do not know $f_1...$

 \blacksquare Idea: f_1 is expected to have a simple shape (no node, single bump,...)

→ **How about a Gaussian?**

ØLet's confirm through a test case!

 \blacksquare 2-field model with the following potential $V(\phi, \psi) = V_{\phi}(\phi) + V_0 \left[\left(1 - \left(\frac{\psi}{M} \right) \right) \right]$ 2 \backslash 2 $+ 2 \left(\frac{\phi \psi}{4} \right)$ $\phi_c M$ 2

 \blacksquare For ϕ 's potential, we take an inflection-type one $V_{\phi}(\phi) = V_0 \beta (\phi - \phi_c)^3$

n In 2-dim cases, calculating eigenvalues by FDM can be tractable by classical computers, so we have performed it and seen the overlap between f_1 and the Gaussian trial function $\tilde{f}_1.$

n Tested parameters:

$$
V_0 = 10^{-15}, M = 10^{16} \text{GeV}, \phi_c = \sqrt{2}M, \beta = 10^4
$$

Lowest eigenvalues

 \triangleright There are small eigenvalues

n Lowest eigenfunctions

 \blacksquare Overlap between the trial function and the lowest eigenfunctions

 \blacktriangleright Overlap with the first eigenfuction is about 0.3 \rightarrow Our quantum algorithm is expected to work!

3. Summary

Summary

- \blacksquare Calculating eigenvalues of differential operators is an important task for understanding the behavior of solutions of PDEs, but the FDM approach suffers from the curse of dimensionality.
- \blacksquare We proposed an improved quantum algorithm for this task based on QSVT
	- \blacktriangleright query complexity: $\tilde{O}(d^3/\gamma \epsilon^2)$
		- (d: dimension, ϵ : accuracy, γ : overlap b/w trial function & eigenfunction)
- \blacksquare HEP use-case: stochastic inflation
	- Øsmall eigenvalues of the adjoint Fokker-Planck op.
		- \rightarrow fat tail in the probability distribution of the density perturbation \rightarrow PBH
	- \triangleright Demonstrated the FDM for hybrid inflation with an inflection-type potential \rightarrow Gaussian trial function works