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1. Improved quantum algorithm for

calculating eigenvalues of differential operators



Eigenvalues of differential operators

M Solving partial differential equations is a major target of quantum computing

»>e.g.) Heat e uation: < (t,x) = Af(t,X), A= 0’ _|_62 _I_ﬁ
8. g : atf ,X) = Af(t,x), A= A= R
»Quantum algorithms to “solve” a PDET, which output a quantum state

encoding the solution in amplitudes: |f) = Y.; f (x;)|i)* (x;: ith grid point)

» Extracting the entire function from |f) takes a large complexity.
We often try to extract a few quantities characterizing f.
B How about targeting such quantities from the beginning?
» Focus on the eigenvalues of the differential operator £ e kimeis ok
veg)Lf =Af,A€R e e

v Important quantities that characterize
the behavior of the solution

t Cao+, New J. Phys. 15 013021 (2013); Linden+, Commun. Math. Phys. 395, 601 (2022); Jin+, PRA 108, 032603 (2023) ...etc ¥ The normalization factor is omitted.



A common way: finite difference method
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M Set grid points in the space and approximate derivatives
by the finite difference method (FDM)

>e.g., central diff. — f(x) = = (f(x+ he;) — f(x — hey)) t

B This converts the differential op. £ into a matrix L, ' x
then we apply some method for matrix eigenvalue problem to L i
—2/h?*  1/h?
52 1/h? —2/h* 1/h?
e.g., L = =7 L= :
X 1/h2 —2/h2  1/h?

1/h? —2/h?

B But FDM suffers from the curse of dimensionality

»In d-dim cases, if we set ng, grid points in each direction, L is ngrxngr
— for large d, intractable in classical computing!

t e;: the unit vector in the ith direction



Previous works

B Quantum algorithms can perform exponentially large matrix calculations

»e.g., HHL for matrix inversion: O (polylog N) complexity for NXN matrices

M |n fact, some works in the 2000st proposed quantum algorithms for calculating
differential op. eigenvalues, based on that for matrix eigenvalues®

» But, not consider multi-dimensional cases or rigorously evaluate the
dependence of complexity on d

»No paper since then, so recent progress in quantum algorithms has not been
incorporated

M Let’s improve the quantum algorithm using state-of-the-art techniques
such as block encoding & quantum singular value transformation!

t Szkopek et al., PRA 72, 062318 (2005); Papageorgiou et al., Quantum Inf. Process. 4, 87 (2005); Bessen, J. Complex. 22, 660 (2006)
¥ Abrams & Lloyd, PRL 83, 5162 (1999)



Block encoding & Quantum singular value transformation

M Block encoding: embed a general matrix into the upper-left block of a unitary
_ (4 *
=, )

»If A is sparse and we have a quantum circuit to access A’s entries
OS™i)j)0) = |i)j) Al-j), we can construct a block-encoding of A efficientlyT

B Quantum singular value transformation (QSVT)t

» Technique to construct a block-encoding U, () = (gSV*(A) *) of gsv(A4),

which is given by transforming A’s singular values g; by a function g:

01 g(01)
A=V o, WT - gsy(4) =V g(0y) wT
(V, W: unitary)

»enables various operations related to A

t Gilyén et al., STOC 2019 pp. 193-204; strictly, we need a few other oracles.



Our quantum algorithm: problem setting

B Consider operators of the Sturm—Liouville type

a —
L = —Zl 1520 (al axl) + ay (ag,aq,...,ag: D - R,)

onD := (U, L)X (U,L) c R?

»includes Laplacian A, (a part of) Fokker-Planck,
the problem in stochastic inflation considered later, and so on

»We impose the Dirichlet boundary condition (f = 0 on dD)
» All the eigenvalues are positive



Our quantum algorithm: finite-difference approx.

B Set ng, points at equal intervals of h in each direction and approximate L as¥

Lf(x) ~ B = aE +5e)f(xF + hep) — (a(x¥ +5e) + a; (x5 — S ep)) F(xE)
tay (" — 2 e)f O — hey) | + ag(xf")
(xigr: grid point in D labeled by j = (jy, ..., jgq) € {1, ...,ngr}Xd)

M By this, £ is converted into Hermitian L € RNer*Ner
(Ngr = ngr total # of grid points)

B When ng. — oo, L’s eigenvalues Az converge to L’s eigenvalues A *

A4 — 4| =0 (iz)

t Larsson and Thomée, “Partial differential equations with numerical method” (2003) # Kuttler, SIAM J. Numer. Anal., 7, 206 (1970)



Our quantum algorithm: find the first singular value

B Now, L is Hermitian and positive-definite, so L’s eigenvalue = L’s singular value
B We are often interested in the first (=smallest) eigenvalue of L

B We use a QSVT-based algorithm to find the first eigenvalue of a matrix*

» (informal) Given a block-encoding U, of a Hermitian H and a vector |v)?
that overlaps the first eigenvector [y, ) of H well (i.e., |(1{|v)] is large),
we find an e-approx. of H’s first eigenvalue A; with O(||H||/€) queries to Uy

> Not dependent on H’s size

»Outline : = Using QSVT with a step-function, e
we can divide eigenvalues smaller/larger

than threshold A,
* Binary search finds 4, - . » A

t Lin and Tong, Quantum 4, 372 (2020) # Strictly, suppose that we are given a quantum circuit to generate a quantum state with such a state vector.



Our quantum algorithm: complexity

B Main theorem (informal)

» Given quantum circuits 0,4, to compute the coefficient functions a;
0, 1%)10) = [%)]a; (X))
and a trial functiont f;: D — R that overlaps the first eigenfunction f; well

‘fp fix)fi(x)dx| =y,
we find an e-approx. of L’s first eigenvalue A, with
O(d?/ye?) queries to O, 's.

B Polynomial complexity with respect to d

B Regarding the dependency on €, compared to Szkopek et al. (2005) (0(1/€3)),
our algorithm makes an improvement.

t Strictly, suppose that we are given a quantum circuit to generate a quantum state that encodes f1 in the amplitudes.



2. Application to estimating the decay rate of

the perturbation distribution tail in stochastic inflation



Stochastic inflation

B Probabilistic framework to analyze inflationary perturbations¥

»dynamics of inflatons ¢ = (¢4, ..., @4) (coarse-grained on a large scale¥)

dep; = —- (1@ 04, v(P)AN + [2v(p)dW,

(v =V /24r?, V: inflatons’ potential, W;: Wiener process, Mp; is set to 1)
l

»e-fold N: time variable (indicating how much the Universe has expanded)

B Density perturbation = N (roughly speaking)

» Inflation occurs while ¢ is rolling in a flat region of V/, v random move
then ends when ¢ reaches a steep region —0—

» 0N spatial fluctuation of the duration of inflation

»long/short duration = large/small expansion
- low/high density end of

inflation

T For a review, see Cruces, Universe 8, 334 (2022) ¥ Supper Hubble scale



Eigenvalue problem in stochastic inflation

B |f inflatons go through a very flat region V() ‘F :
(e.g., inflection point), random movement [
dominates slow-roll W CMB observed scales

— Fat tail in the probability distribution of
density perturbations

primordial black holes?

—> primordial black holes || /e, . @ .%e
B Conditioned that inflatons are at ¢p at some time, prer;eg;:,?\ — > ¢
the probability density of V', e-fold to the end end of inflation

Vennin, arXiv:2009.08715

of inflation, obeys the adjoint Fokker-Plack eq.
0.
OnP(V|9) = L,P(VI9), Lip =T, (——L-dy, +v03,)

v

M Eigenvalues of L;P = decay rate of P(NV'|¢p) w.rt. V'
= If L;rp has small eigenvalues, P(IV'|¢) may have a fat tail!



Applying our quantum algo to find the eigenvalue of Lip

B d may be large (multifield inflation) = classically intractable

B Our quantum algorithm can be applied

» L, is not of the Strum-Liouville type, but can be transformed to LFEP
of that type with the same eigenvalues

M [ssue: Can we choose a trial function fl overlapping the first eigenfunc f; well?

> ‘fD f1 (%) f; (x)dx| should be as large as possible

»But we do not know f; ...

~

fiy

M [dea: f; is expected to have a simple shape
(no node, single bump,...)
— How about a Gaussian?

> Let’s confirm through a test case! > ¢



Test case: Hybrid inflation with an inflection point

M 2-field model with the following potential
2\ 2 2
V@) =Vo@)+ | (1= (2)7) +2(2%)]

bcM

B For ¢’s potential, we take an inflection-type one

Vo (@) =Vo (P — ¢c)°

M In 2-dim cases, calculating eigenvalues by FDM can be tractable by classical
computers, so we have performed it and seen the overlap between f; and
the Gaussian trial function f;.

B Tested parameters:
V, = 10715, M = 10'°GeV, ¢p. = V2M, 5 = 10*



Test case: Hybrid inflation with an inflection point

M Lowest eigenvalues
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»There are small eigenvalues



Test case: Hybrid inflation with an inflection point

B Lowest eigenfunctions
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Test case: Hybrid inflation with an inflection point

M Overlap between the trial function and the lowest eigenfunctions

10°
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»Overlap with the first eigenfuction is about 0.3
—> Our quantum algorithm is expected to work!



3. Summary



Summary

B Calculating eigenvalues of differential operators is an important task for
understanding the behavior of solutions of PDEs, but the FDM approach suffers
from the curse of dimensionality.

B We proposed an improved quantum algorithm for this task based on QSVT

>query complexity: O(d3/ye?)
(d: dimension, €: accuracy, y: overlap b/w trial function & eigenfunction)

B HEP use-case: stochastic inflation

»small eigenvalues of the adjoint Fokker-Planck op.
— fat tail in the probability distribution of the density perturbation
— PBH

» Demonstrated the FDM for hybrid inflation with an inflection-type potential
—> Gaussian trial function works



