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1. Improved quantum algorithm for

calculating eigenvalues of differential operators



Eigenvalues of differential operators
n Solving partial differential equations is a major target of quantum computing

Øe.g.) Heat equation: !!" 𝑓 𝑡, 𝐱 = Δ𝑓 𝑡, 𝐱 , Δ ≔ !!

!#! +
!!

!$! +
!!

!%!

ØQuantum algorithms to “solve” a PDE†, which output a quantum state
encoding the solution in amplitudes: 𝑓 = ∑! 𝑓 𝑥! |𝑖⟩‡ (𝑥!: 𝑖th grid point)

ØExtracting the entire function from 𝑓 takes a large complexity.
We often try to extract a few quantities characterizing 𝑓.

n How about targeting such quantities from the beginning? 
ØFocus on the eigenvalues of the differential operator ℒ

üe.g.) ℒ𝑓 = 𝜆𝑓, 𝜆 ∈ ℝ
üImportant quantities that characterize

the behavior of the solution 
† Cao+, New J. Phys. 15 013021 (2013); Linden+, Commun. Math. Phys. 395, 601 (2022); Jin+, PRA 108, 032603 (2023) ...etc ‡ The normalization factor is omitted.

https://commons.wikimedia.org/wiki/
Category:Drum_vibration_animations



A common way: finite difference method
n Set grid points in the space and approximate derivatives

by the finite difference method (FDM)

Øe.g., central diff. !
!#"

𝑓 𝐱 ≃ &
'( 𝑓 𝐱 + ℎ𝐞) − 𝑓 𝐱 − ℎ𝐞) † 

n This converts the differential op. ℒ into a matrix 𝐿,
then we apply some method for matrix eigenvalue problem to 𝐿

n But FDM suffers from the curse of dimensionality
ØIn 𝑑-dim cases, if we set 𝑛"# grid points in each direction, 𝐿 is 𝑛"#$ ×𝑛"#$

→ for large 𝑑, intractable in classical computing! 
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† 𝐞!: the unit vector in the 𝑖th direction
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Previous works
n Quantum algorithms can perform exponentially large matrix calculations

Øe.g., HHL for matrix inversion: 𝑂(poly log𝑁) complexity for 𝑁×𝑁 matrices

n In fact, some works in the 2000s† proposed quantum algorithms for calculating 
differential op. eigenvalues, based on that for matrix eigenvalues‡

ØBut, not consider multi-dimensional cases or rigorously evaluate the 
dependence of complexity on 𝑑

ØNo paper since then, so recent progress in quantum algorithms has not been 
incorporated

n Let’s improve the quantum algorithm using state-of-the-art techniques
such as block encoding & quantum singular value transformation!

† Szkopek et al., PRA 72, 062318 (2005); Papageorgiou et al., Quantum Inf. Process. 4, 87 (2005); Bessen, J. Complex. 22, 660 (2006)
‡ Abrams & Lloyd, PRL 83, 5162 (1999)



Block encoding & Quantum singular value transformation
n Block encoding: embed a general matrix into the upper-left block of a unitary

𝑈- =
𝐴 ∗
∗ ∗

ØIf 𝐴 is sparse and we have a quantum circuit to access 𝐴’s entries
𝑂+,-. 𝑖 𝑗 0 = 𝑖 𝑗 𝐴)* , we can construct a block-encoding of 𝐴 efficiently†

n Quantum singular value transformation (QSVT)†

ØTechnique to construct a block-encoding 𝑈/%&(+) =
𝑔23(𝐴) ∗
∗ ∗ of 𝑔./(𝐴),

which is given by transforming 𝐴’s singular values 𝜎! by a function 𝑔:

𝐴 = 𝑉
𝜎&

𝜎'
⋱

𝑊4 → 𝑔23 𝐴 = 𝑉
𝑔(𝜎&)

𝑔(𝜎')
⋱

𝑊4

Øenables various operations related to 𝐴
† Gilyén et al., STOC 2019 pp. 193-204; strictly, we need a few other oracles.

(𝑉,𝑊: unitary)



Our quantum algorithm: problem setting
n Consider operators of the Sturm–Liouville type

ℒ = −∑!01$ %
%&"

𝑎!
%
%&"

+ 𝑎2 (𝑎2, 𝑎1, … , 𝑎$: 𝒟 → ℝ3)

on 𝒟 ≔ 𝑈, 𝐿 ×⋯ 𝑈, 𝐿 ⊂ ℝ$

Øincludes Laplacian Δ, (a part of) Fokker-Planck, 
the problem in stochastic inflation considered later, and so on

ØWe impose the Dirichlet boundary condition (𝑓 = 0 on 𝜕𝒟)
ØAll the eigenvalues are positive



Our quantum algorithm: finite-difference approx.
n Set 𝑛"# points at equal intervals of ℎ in each direction and approximate ℒ as†

(𝐱𝐣
67: grid point in 𝒟 labeled by 𝐣 = 𝑗&, … , 𝑗8 ∈ 1,… , 𝑛67

×8
)

n By this, ℒ is converted into Hermitian 𝐿 ∈ ℝ4#$×4#$
(𝑁"# = 𝑛"#$ : total # of grid points)

n When 𝑛"# → ∞, 𝐿’s eigenvalues 𝜆67 converge to ℒ’s eigenvalues 𝜆6‡

𝜆67 − 𝜆6 = 𝑂 1
8#$!

† Larsson and Thomée, “Partial differential equations with numerical method” (2003) ‡ Kuttler, SIAM J. Numer. Anal., 7, 206 (1970)

ℒ𝑓(𝐱𝐣
67) ≈ ∑):&8 ;&

(! F𝑎)(𝐱𝐣
67 + (

' 𝐞))𝑓(𝐱𝐣
67 + ℎ𝒆)) − 𝑎)(𝐱𝐣

67 + (
' 𝒆)) + 𝑎) (𝐱𝐣

67 − (
' 𝒆)) 𝑓(𝐱𝐣

67)

I+𝑎)(𝐱𝐣
67 − (

'
𝒆))𝑓(𝐱𝐣

67 − ℎ𝒆)) + 𝑎<(𝐱𝐣
67)



Our quantum algorithm: find the first singular value
n Now, 𝐿 is Hermitian and positive-definite, so 𝐿’s eigenvalue = 𝐿’s singular value

n We are often interested in the first (=smallest) eigenvalue of ℒ

n We use a QSVT-based algorithm to find the first eigenvalue of a matrix†
Ø(informal) Given a block-encoding 𝑈9 of a Hermitian 𝐻 and a vector |𝑣⟩‡

that overlaps the first eigenvector |𝜓1⟩ of 𝐻 well (i.e., 𝜓1 𝑣 is large), 
we find an 𝜖-approx. of 𝐻’s first eigenvalue 𝜆1 with J𝑂 𝐻 /𝜖 queries to 𝑈9

ØNot dependent on 𝑯’s size
ØOutline : ・ Using QSVT with a step-function,

we can divide eigenvalues smaller/larger
than threshold 𝜆.=
・ Binary search finds 𝜆1

† Lin and Tong, Quantum 4, 372 (2020) ‡ Strictly, suppose that we are given a quantum circuit to generate a quantum state with such a state vector.

𝜆
𝜆.=



Our quantum algorithm: complexity
n Main theorem (informal)

ØGiven quantum circuits 𝑂:" to compute the coefficient functions 𝑎!
𝑂:" 𝐱 0 = 𝐱 𝑎!(𝐱)

and a trial function† T𝑓1: 𝒟 → ℝ that overlaps the first eigenfunction 𝑓1 well

∫𝒟 𝑓1 𝐱 T𝑓1 𝐱 d𝐱 ≥ 𝛾,
we find an 𝜖-approx. of ℒ’s first eigenvalue 𝜆1with
Y𝑂(𝑑</𝛾𝜖=) queries to 𝑂:"’s.

n Polynomial complexity with respect to 𝑑

n Regarding the dependency on 𝜖, compared to Szkopek et al. (2005) ( Y𝑂(1/𝜖<)),
our algorithm makes an improvement.

† Strictly, suppose that we are given a quantum circuit to generate a quantum state that encodes '𝑓" in the amplitudes.



2. Application to estimating the decay rate of

the perturbation distribution tail in stochastic inflation



Stochastic inflation
n Probabilistic framework to analyze inflationary perturbations†

Ødynamics of inflatons 𝝓 = (𝜙1, … , 𝜙$) (coarse-grained on a large scale‡)
d𝜙! = − 1

> 𝝓
𝜕@"𝑣 𝝓 d𝑁 + 2𝑣 𝝓 d𝑊!

(𝑣 = 𝑉/24𝜋', 𝑉: inflatons’ potential, 𝑊): Wiener process, 𝑀>? is set to 1)

Øe-fold 𝑁: time variable (indicating how much the Universe has expanded)

n Density perturbation = 𝛿𝑁 (roughly speaking)
ØInflation occurs while 𝝓 is rolling in a flat region of 𝑉,

then ends when 𝝓 reaches a steep region
Ø𝛿𝑁: spatial fluctuation of the duration of inflation
Ølong/short duration → large/small expansion

→ low/high density

† For a review, see Cruces, Universe 8, 334 (2022) ‡ Supper Hubble scale

𝜙

𝑉 random move

end of
inflation



Eigenvalue problem in stochastic inflation
n If inflatons go through a very flat region

(e.g., inflection point), random movement
dominates slow-roll
→ Fat tail in the probability distribution of

density perturbations
→ primordial black holes

n Conditioned that inflatons are at 𝝓 at some time,
the probability density of 𝒩, e-fold to the end
of inflation, obeys the adjoint Fokker-Plack eq.
𝜕𝒩𝑃 𝒩 𝝓 = ℒA>

4 𝑃 𝒩 𝝓 , ℒA>
4 = ∑):&8 −

!)"B
B 𝜕C" + 𝑣𝜕C"

'

n Eigenvalues of ℒAB
C = decay rate of 𝑃 𝒩 𝝓 w.r.t. 𝒩

⇒ If ℒAB
C has small eigenvalues, 𝑃 𝒩 𝝓 may have a fat tail!

Vennin, arXiv:2009.08715



Applying our quantum algo to find the eigenvalue of
n 𝑑 may be large (multifield inflation) → classically intractable

n Our quantum algorithm can be applied
ØℒA>

4 is not of the Strum-Liouville type, but can be transformed to 
of that type with the same eigenvalues

n Issue: Can we choose a trial function T𝑓1 overlapping the first eigenfunc 𝑓1 well?

Ø ∫𝒟 𝑓1 𝐱 T𝑓1 𝐱 d𝐱 should be as large as possible

ØBut we do not know 𝑓1...

n Idea: 𝑓1 is expected to have a simple shape
(no node, single bump,...)

→ How about a Gaussian?
ØLet’s confirm through a test case!

ℒ!"
#

YℒA>
4

𝜙

Z𝑓&



Test case: Hybrid inflation with an inflection point
n 2-field model with the following potential

𝑉 𝜙,𝜓 = 𝑉C 𝜙 + 𝑉< 1 − D
E

' '
+ 2 CD

C*E

'

n For 𝜙’s potential, we take an inflection-type one
𝑉@ 𝜙 = 𝑉2𝛽 𝜙 − 𝜙D <

n In 2-dim cases, calculating eigenvalues by FDM can be tractable by classical 
computers, so we have performed it and seen the overlap between 𝑓1 and
the Gaussian trial function T𝑓1.

n Tested parameters:
𝑉2 = 10E1F, 𝑀 = 101GGeV, 𝜙D = 2𝑀, 𝛽 = 10H



Test case: Hybrid inflation with an inflection point
n Lowest eigenvalues

ØThere are small eigenvalues



Test case: Hybrid inflation with an inflection point
n Lowest eigenfunctions



Test case: Hybrid inflation with an inflection point
n Overlap between the trial function and the lowest eigenfunctions

ØOverlap with the first eigenfuction is about 0.3
→ Our quantum algorithm is expected to work!



3. Summary



Summary
n Calculating eigenvalues of differential operators is an important task for 

understanding the behavior of solutions of PDEs, but the FDM approach suffers 
from the curse of dimensionality.

n We proposed an improved quantum algorithm for this task based on QSVT
Øquery complexity: Y𝑂(𝑑</𝛾𝜖=)

(𝑑: dimension, 𝜖: accuracy, 𝛾: overlap b/w trial function & eigenfunction)

n HEP use-case: stochastic inflation
Øsmall eigenvalues of the adjoint Fokker-Planck op.

→ fat tail in the probability distribution of the density perturbation
→ PBH

ØDemonstrated the FDM for hybrid inflation with an inflection-type potential
→ Gaussian trial function works 


