HEP in Quantum Era, KEK, 2024.12.1

Quantum computing of chirality imbalance in $\mathcal{S}U(2)$ gauge theory

Xingyu Guo (QuNu Collaboration) South China Normal University

arXiv:XXXX.XXXXX

Introduction

- Spontaneous chiral symmetry breaking
	- One of the key features of QCD
	- Origin of mass
	- Chiral magnetic effect, chiral vortical effect…
	- Non-perturbative, high baryon chemical potential
		- Challenging for traditional methods

Introduction

- Quantum computing: a promising new method
- Topics of interest:

 \bullet

- Real-time evolution
- Non-perturbative physics
- Non-Abelian gauge theory • Thermal states

…

• 1+1D SU(2) model: simplest non-Abelian model

Model

- Chiral condensate: $\sigma = \bar{\psi}\psi$
- Discritization: Staggered fermion

$$
H = -i\bar{\psi}\gamma^{1}(\partial_{1} + igA_{1}^{a}t^{a})\psi + m\bar{\psi}\psi + \mu\psi^{\dagger}\psi + \frac{1}{2}\sum_{a} (L^{a})^{2}
$$

$$
\psi_1(x) \to \phi_{2n}, \quad \psi_2(x) \to \phi_{2n+1}
$$
\n
$$
H = \frac{1}{2\Delta} \sum_{n=0}^{N-2} \left(\phi_n^{\dagger} U_n \phi_{n+1} + H. C. \right) + m \sum_{n=0}^{N-1} (-1)^{n+1} \phi_n^{\dagger} \phi_n + \mu \sum_{n=0}^{N-1} \phi_n^{\dagger} \phi_n + \frac{\Delta g^2}{2} \sum_{n=0}^{N-2} L_n^2
$$

Eliminating Gauge Field

• Gauss's Law

 $\phi_{n-1}^a = \phi_n^{\dagger} t$ a ϕ_{n} \rightarrow L_{n}^{a} $=$ \sum *i*<*n* Q_i^a *i*

$$
L_n^a - R_{n-1}^a = Q_{n-1}^a
$$

• Local gauge transformation

 $\exp\left[i\theta_k\right]$ ∑ *j*>*k* **Q***j* (-1) $n+1\phi^{\dagger}\phi_n + \Delta\mu$ *N*−1 ∑ *n*=0 $\phi^{\dagger} \phi_n +$ $\Delta^2 g^2$ 2 *N*−2 ∑ *n*=0 ∑ *k*≤*n* **Q***k*

$$
\Theta = \prod_{k} \epsilon
$$

$$
H = \frac{1}{2} \sum_{n=0}^{N-2} (\phi_n^{\dagger} \phi_{n+1} + \text{H.c.}) + \Delta m \sum_{n=0}^{N-1} (\phi_n^{\dagger} \phi_n^{\dagger})
$$

Jordan-Wigner transformation

 $\phi_n^r \rightarrow \varphi_{2n}$, ϕ_n^g

 $\varphi_n = \sigma_n^-$

 $H = -\frac{1}{2}$ 2 *N*−2 ∑ *n*=0 $\left(\sigma_{2n}^+\right)$ σ^z_2 2*n*+1 σ_{2n+2}^- + σ_{2n+1}^+ σ_{2n+2}^z σ_{2nn+3}^- + H . C . $\Big)$ + Δ*m*

$$
n, \quad \phi_n^g \to \varphi_{2n+1}
$$

$$
\sigma_n^- \prod_{l=0}^{n-1} (-i\sigma_l^z)
$$

 $Q_n^x =$ 1 2 $Q_n^y =$ *i* 2 $Q_n^z =$ 1 4

$$
\left(\cdot \cdot \right) + \Delta m \sum_{n=0}^{N-1} \left[(-1)^{n+1} \frac{\sigma_{2n}^z + \sigma_{2n+1}^z}{2} + 1 \right] + \frac{\Delta^2 g^2}{2} \sum_{n=0}^{N-2} \left(\sum_{k \le n} Q_k \right)
$$

$$
(\sigma_{2n+1}^+\sigma_{2n}^- + H.C.)
$$

$$
(\sigma_{2n+1}^+\sigma_{2n}^- - H.C.)
$$

$$
\frac{1}{4}(\sigma_{2n}^z-\sigma_{2n+1}^z)
$$

Algorithm: Variational Method

• Finite temperature: the Gibbs state

- Variational method
	- Parametrization

1

 $\rho(\alpha) = \sum P_i(\beta)U(\alpha) |i\rangle\langle i| U^{\dagger}(\alpha)$

i

 $\rho(\beta) =$

Analytically solvable

Algorithm Workflow

Algorithm: Variational Method

• Loss Function : Free energy

-
- The variational method is only used once for all different temperatures. • Many part of the calculation is analytical.
- $F = E TS$
	- $=$ Tr $[\rho H] + T$ Tr $[\rho \log \rho]$ $= \sum P_i [E_i + T \ln P_i]$ *i*

Algorithm: Variational Method

• Construction of $U(\alpha)$: QAOA ansatz

i=1 *j*=1 *n* ∏ $\exp(i\alpha_{ij}H_j)$

 $[H_i, H_j] \neq 0$

 $H = H_1 + H_2 + \cdots + H_n$

• Each H_i perserves the same symmetries as H, so that $U(\alpha)$ also preserves the symmetries. H_i perserves the same symmetries as H , so that $U(\alpha)$

Algorithm: Monte-Carlo

- Monte-Carlo in optimization
	- Randomly select a small set of states, do the optimization with this set until finished.
	- Select another set, continue the optimization with the new set.
	- Repeat until parameters convergence.
- In practical, a set of 20 qubits is used for each step.
-

Algorithm: Monte-Carlo

- Monte-Carlo in thermal state construction
	- Start from $|i\rangle$ such that $U|i\rangle$ is the ground state.
	- Randomly flip one qubit of $|i\rangle$ to get a new state $|j\rangle$
	- Calculate the energy expectation value *Ej* $\langle i|U^{\dagger}HU|i\rangle$
	- If $E_j < E_i$, accept the new state, otherwise, accept it with the probability $e^{-(E_j E_i)/T}$
		- If the new state is rejected, the old state is added into the mixed state again.
	- Repeat until number of states reaches a predetermined limit.

Results: Full Gibbs State

- 8 qubits, $\mu = 0$.
- Optimization done at highest temperature.
- All 256 sates are used to construct the Gibbs state.
- The VQE method produces the Gibbs state very accurately.

Chiral condensate at finite temperature

Results: Full Gibbs State

- 8 qubits, $m/g = 5$.
- The grond state changes at high chemical potential.
- Consistent with theoretical prediction.

Chiral condensate at finite temperature

Results: Monte-Carlo

- 8 qubits, 1000 states for each sampling.
- The accuracy is good.
- Monte-Carlo method is not effective for small system. (1000 vs. 256)

Chiral condensate at finite temperature

Results: Monte-Carlo

- 12 qubits, 1000 (left) and 2000 (right) states.
- Required number of sampling increases only as power law of number of qubits.
- 2000 vs. 4096 is already effective.

Chiral condensate at finite temperature

Results: Real QC results

- 8 qubits, results from IBM's quantum hardware.
- A simpler ansatz for *U* is used.
- Optimization is still done classically.
- No error mitigation used.
- Our algorithm can achieve good precision on real QC.

Chiral condensate at finite temperature

Results: Real QC results

- Good accuracy for all the eigenenergy.
- Promising to apply to larger systems.

Relative error of the eigenenergy

Summary and Outlook

- We propose a framework with VQE and Monte-Carlo method to simulate thermal states on quantum computers.
- With this frame work, the chiral condensate of 1+1D SU(2) gauge model is studied. • Our method is efficient and accurate in classical simulations as well as on real QCs. • Apply to massless fermions: spontaneous symmetry breaking. (Paper to appear
-
- soon)

• Extend to larger systems or even higher dimensions.