

International Center for Quantum-field Measurement Systems for Studies of the Universe and Particles WPI research center at KEK

Halo independent analysis of direct dark matter detection through electron scattering

Muping Chen, Graciela B. Gelmini, and Volodymyr Takhistov

Direct DM detection attempts to measure the energy deposited within a detector by $\frac{dR}{dE_R} = \frac{1}{2\mu_{\chi e}^2} \frac{1}{E_R} \sum_{i}^{}' \int_{a_{\min}}^{q_{\max}} dq q \ \tilde{\eta}(v_{\min}(q, E_R + E_{\text{B}i})) |F_{\text{DM}}(q)|^2 |f^{i,f}(q, E_R)|^2$.
collisions of DM particl collisions of DM particles from the dark halo of our Galaxy passing through the detector.

DM-Nuclei scattering detectors $(E_{thres} \sim \text{keV})$ are used to detect DM heavier than 1 electron form GeV (WIMP), whereas DM-electron scattering detectors $(E_{thres} \sim eV)$ are used to detect sub-GeV DM (Light DM, or LDM).

Dark Sector Workshop, 1608.08632

Halo Independent (HI) Analysis: The halo model is not assumed but is to be found using the observed rate. All the dependence on the halo is in $\eta(\nu_{\min})$, common to all experiments, . Plots are made in the $(\nu_{\min}, \tilde{\eta})$ plane.
(Fox, Liu and Weiner, PRD 83, 103514 (2011), [1011.1915])

Complications: experiments do not directly observe the recoil energy; instead, they observe a proxy E^{\prime} for E_R with E^{\prime} dependent energy resolutions/efficiencies.

Direct detection

The differential rate for target nuclide T,

$$
\frac{dR_T}{dE_R} = N_T \int_{v>v_{\text{min}}} \frac{d\sigma_T}{dE_R} \times \frac{\rho}{m} f(\vec{v}, t) d^3v
$$

Example: DM-Nuclei Spin Independent interaction,

$$
\frac{d\sigma_T}{dE_R} = \frac{\sigma_T(E_R) M_T}{2\mu_T^2 v}
$$

$$
\frac{dR_T}{dE_R} = N_T \frac{\sigma_T(E_R)}{2m\mu_T^2} \rho \eta(v_{min}) \ , \quad \eta(v_{\min}) \equiv \int_{v>v_{\min}} d^3 v \, \frac{f(\vec{v})}{v} = \int_{v_{\min}}^{\infty} dv \, \frac{F(v)}{v} \ .
$$

Halo Dependent (HD) Analysis: Assume a local dark halo model, i.e., $\eta(v_{\min})$.
Plots are made in (m, σ_{ref}) parameter space.
Differential rate:

$$
\frac{d\mathcal{R}_{\pm}}{dE'}(v_{\min}, E') = \sum_{\pm} \frac{\epsilon(E')}{2\mu_{\chi e}^2} \sum_{i,f} \int_0^{E_{\max}} \frac{dE_R}{E_R} G(E', E_R) J_{\pm}(v_{\min}, E_R + E_{\text{B}i}) q_{\pm}(v_{\min}, E_R + E_{\text{B}i})
$$

 $|F_{\rm DM}(q_{\pm}(v_{\rm min},E_R+E_{\rm Bi}))|^2 |f^{i,j}(q_{\pm}(v_{\rm min},E_R+E_{\rm Bi}),E_R)|^2$.

In free atoms, electrons are excited from an orbital to a free state, $E_e = E_R + E_{Bnl}$.
Differential rate: (Essig et al, JHEP 05 (2016) 046, [1509.01598])

 $\frac{dR_{\rm ion}}{dE_R} = \sum_{nl} \frac{1}{8\mu_{\chi e}^2} \frac{1}{E_R} \int_{q_{\rm min}}^{q_{\rm max}} dq \, q \, \tilde{\eta}(v_{\rm min}(q,E_R+E_{Bnl})) \, |F_{\rm DM}(q)|^2 \, |f_{\rm ion}^{nl}(q,E_R)|^2 \; ,$

: DM, particle model, and detector dependent response function. It acts as a "window function" in v_{min} . We can get information about $\tilde{\eta}(v_{\text{min}})$, only for the v_{\min} range in which it is significantly different from 0.

Convex geometry tells us that for d data points (Gelmini et al, JCAP 12 (2017) 039 [1707.07019]),

$$
F(v) = \sum_{n=1} F(v_n) \delta(v - v_n)
$$

 $\tilde{\eta}$ can be parameterized by v_n and $F(v_n)$.

$$
\frac{dR_{\rm crys}}{dE_R} = N_{\rm cell} \frac{\alpha m_e^2}{\mu_{\chi e}^2} \int dq \frac{1}{q^2} \tilde{\eta}(v_{\rm min}(q, E_R)) |F_{\rm DM}(q, E_R)|^2 |f_{\rm crys}(q, E_R)|^2
$$

The observed rate is
$$
\frac{dR}{dE'} = \varepsilon(E') \int_0^\infty dE_R \sum_T G_T(E_R, E') \frac{dR_T}{dE_R}
$$

 $\varepsilon(E')$: counting efficiency; $G_T(E_R,E')$: energy resolution.

Change of variable, from (q, E_R) to (v_{\min}, E_R) (two branches, $q_+(v_{\min}, E_R)$), the response function

Formulation for general nuclear form factor, interaction type and energy resolution (Gelmini and Gondolo, JCAP 12 (2012) 015, [1202.6359])

$$
\frac{dR}{dE'} = \int_0^{v_{\text{max}}} dv_{\text{min}} \frac{d\mathcal{R}}{dE'}(v_{\text{min}}, E') \ \tilde{\eta}(v_{\text{min}}) \ , \ \tilde{\eta}(v_{\text{min}}) = \frac{\rho \sigma_{\text{ref}}}{m} \eta(v_{\text{min}})
$$

In Semiconductors, electrons are excited from the valence band to the conduction band, $E_e = E_R$.

- Reponse function is significantly larger in some ranges of v_{min} , indicating the size of the "window."
- Semiconductor detectors have lower energy threshold than liquid gas detectors.

Due to their kinematic difference, the DM-Nuclei scattering cross section only depends on v , but DM-electron scattering depends on both v (DM velocity) and q (momentum transfer).

DM-Nucleus scattering: the target nuclei are free, the recoil energy $E_R = q^2/2m_N$. DM-electron scattering: the target electrons are bounded and have an unknown initial momentum, the electron energy $E_e = \vec{q} \cdot \vec{v} - q^2/2m_\chi$. $E_e = E_R +$ binding energy. (sc

Where $\epsilon(q, E)$ is the dielectric function that contains all information about the material.

Review of DM-Nucleus Scattering

DM-electron Scattering

Results

Comparing window functions shown in Fig. 1 and Fig. 2,

DM-electron scattering rate:

DM form factor: $F_{DM}(q) = 1$ or $F_{DM}(q) = 1/q^2$; $\frac{1}{2}$ electron form factor: $f^{l,f}(q,E_R)$, overlap of the initial and final electron wavefunctions.

Response function:

$$
\frac{d\mathcal{R}_{\text{ion}}}{dE'}(v_{\text{min}}, E') = \sum_{\pm} \frac{\epsilon(E')}{8\mu_{\chi e}^2} \sum_{nl} \int \frac{dE_R}{E_R} G_{\text{ion}}(E', E_R) J_{\pm}(v_{\text{min}}, E_R + E_{\text{B}nl}) q_{\pm}(v_{\text{min}}, E_R + E_{\text{B}nl})
$$

 $|\times|F_{\rm DM}(q_{\pm}(v_{\rm min},E_R+E_{\rm Bnl}))|^2 |f_{\rm ion}^{n_1}(q_{\pm}(v_{\rm min},E_R+E_{\rm Bnl}),E_R)|^2$

Response function:

$$
\frac{d\mathcal{R}_{\text{crys}}}{dE'}(v_{\min}, E') = \sum_{\pm} \frac{N_{\text{cell}}\epsilon(E')}{\mu_{\chi e}^2} (\alpha m_e^2) \int_0^{E_{\text{max}}} dE_R G_{\text{crys}}(E', E_R) \frac{J_{\pm}(v_{\min}, E_R)}{q_{\pm}^2(v_{\min}, E_R)}
$$

$$
\times |F_{\text{DM}}(q_{\pm}(v_{\min}, E_R))|^2 |f_{\text{crys}}(q_{\pm}(v_{\min}, E_R), E_R)|^2.
$$

In-medium Effects

The calculation for semiconductors can be further improved by including the in medium effects. The differential rate becomes (Knapen, Kozaczuk, and Lin, PRD 104, 015031 (2021), [2101.08275])

$$
\frac{dR}{dE} = \frac{1}{\rho_T} \frac{1}{8\pi^2 \mu_{\chi e}^2 \alpha} \int dq \, q^3 |F_{\rm DM}(q)|^2 \frac{1}{1 - e^{-\beta E}} \text{Im}\left[\frac{-1}{\epsilon(q, E)}\right] \tilde{\eta}(v_{\rm min}(q, E)).
$$

Response function

$$
\frac{d\mathcal{R}}{dE'}(E', v_{\min}) = \sum_{\pm} \frac{1}{\rho_T} \frac{\varepsilon(E')}{8\pi^2 \mu_{\chi e}^2 \alpha} \int dE G(E', E) J_{\pm}(v_{\min}, E) q_{\pm}^3(v_{\min}, E)
$$

$$
\times |F_{\text{DM}}(q_{\pm}(v_{\min}, E))^2 \frac{1}{1 - e^{-\beta E}} \text{Im}\left[\frac{-1}{\epsilon(E, q_{\pm}(v_{\min}, E))}\right].
$$

An example is shown in Fig. 3. The amplitude change due to the in-medium effect (screening) is significant, so this effect should always be included.

(https://arxiv.org/abs/2105.08101 & https://arxiv.org/abs/2209.10902)