Dark matter search using diamond NV centers at QUP Atsuhiro UMEMOTO KEK QUP Postdoc On behalf of Quantum Detector Cluster Group in QUP

The particle characteristics

- longer decay life-time than the age of universe
- non-zero mass
- no electromagnetic charge

Beyond the standard model

and etc..

In the case of ultralight dark matter (e.g. axion like particles)

interaction with Spin 1/2 particle $\mathcal{L}_{=} - i g_{aee} a(x) \overline{\psi} \gamma_5 \psi(x)$

US Cosmic Visions: New Ideas in Dark Matter 2017 : Community Report

detectable through a magnetic sensing via spins

Diamond nitrogen vacancy (NV) center - Characteristics

diamond substrate

- Defect with nitrogen (substituting for carbon) and vacancy - Quantum sensor with excellent spin coherence property

Ramsey sequence

- Two level system and spin manipulation

Magnetic field sensing

Nature Materials, 8, 383 (2009)

Time (µs)

$\sqrt{n_{NV}T_2}$ larger n_{NV} and T₂ for improved sensitivity

NV	temperature	sensitivity	n _{NV}	T ₂	
Single	RT	9.1 nT/vHz *1	1	2.4 ms ^{*1}	
ensemble	RT	9 pT/√Hz ^{*2}	$1.4 imes10^{11}$ / ($8.5 imes10^{-4}$ mm ³) *2	40 μs ^{*3}	
Single	77 K		1	0.6 s*4	250

*1 : Nat Commun 10, 3766 (2019), *2: Phys. Rev. X 5, 041001 (2015)

*3 : npj Quantum Inf 8, 95 (2022) ([P1] 5 ppm,NV ensemble, $T_2 = 40 \ \mu s$), *4 : Nat Commun 4, 1743 (2013)

ensemble with low temp measurement is promising

ODMR spectrum

Experiment : strategy and schedules FY2024 : demonstration at room temp.

Ideal sensitivity for axion like particles search

But the laser malfunctioned.

introduce a new 10W laser in next Spring conduct measurements using a temporary one

CryoCore (MONTANA inst.)

NV parallel to magnetic field

Measurement using 0.4 g diamond detector (NV 1 ppm \sim 1.6 × 10¹⁷/cc) x 1yr achieves XENONnT (solar axion search, with 5.9 ton LXe) first physics goal :

axion like DM search with a sensitivity surpassing XENONnT by 2030

FY2025 : low temp experiment to improve n_{NV} and T_2

table-top cryo-station was installed.

Optical system will be constructed to perform the magnetic sensitivity for dark matter search

- Minimum temp 4 K
- 5 optical windows -
- vibration < 50 nm
- 2 RF and 20 DC

Chamber : ϕ 53 mm x 63 mm