EFT for inflation and structure formation

Mehrdad Mirbabayi

ICTP

KEK, Nov 6, 2024

Effective Field Theory (EFT)

EFT is a modern name for an old practice:

- 1. Identify the relevant Degrees Of Freedom (DOFs),
- 2. Identify the symmetries,
- 3. Write a local model, compatible with the symmetries.

Examples: Hydrodynamics, General Relativity, Fermi Theory, String Theory, . . .

Power of EFT

The locality and symmetry make EFTs very predictive.

- \triangleright The leading behavior at large distance and long time is universal
	- 1. Turbulent cascade (Hydro)
	- 2. Kerr black hole (GR),
	- 3. Parity violation (Weak interactions), . . .

 \triangleright Deviation are systematically organized via a derivative expansion.

1. EFT of Inflation

2. EFT for open systems and dissipation

3. EFT of LSS

Single-Field Inflation

Simplest model of inflation adds one scalar field to GR

$$
S=\frac{1}{2}\int\sqrt{-g}[\mathit{M}_{\rm pl}^2R-(\partial\phi)^2-2V(\phi)],
$$

with a sufficiently flat potential:

$$
\frac{M_{\rm pl}^2 V_{,\phi}^2}{V^2} \ll 1, \qquad \left| \frac{M_{\rm pl}^2 V_{,\phi\phi}}{V} \right| \ll 1.
$$

This is already an EFT with cutoff $\leq M_{\rm pl}$.

Cosmology as a BSM lab

 \triangleright Many inflationary models solve flatness and horizon puzzles.

- \triangleright They leave their signature in cosmological perturbations;
	- 1. Observed adiabatic scalar perturbations: $\delta \phi \rightarrow \zeta \rightarrow \delta \rho / \rho$
	- 2. Illusive tensor perturbations: γ_{ii} .
- \blacktriangleright It's tempting to use observations to learn about inflationary physics.
- H_{inf} could be as high as 10¹⁴GeV, $\Delta \phi \gg M_{\text{pl}}$.

Cosmology as a BSM lab, $V(\phi)$

ning, but also allow for significant negative running, which gives α

Different $V(\phi)$ can be distinguished using the observed $P_{\zeta}(k)$ and constrained $P_{\gamma}(k)$:

Fig. 28. Constraints on the tensor-to-scalar ratio *r*0.⁰⁰² in

Cosmology as a BSM lab, derivative interactions

 \blacktriangleright Flatness of the potential implies an approximate shift symmetry.

▶ There can be large derivative interactions like $(\partial \phi)^4$ or

$$
(\partial \phi)^2 \to -\sqrt{1-(\partial \phi)^2}, \qquad \text{DBI}.
$$

 \triangleright These can be distinguished by their non-Gaussianity predictions

$$
\left\langle \zeta_{\vec{k}_1} \zeta_{\vec{k}_2} \zeta_{\vec{k}_3} \right\rangle \sim B(k_1,k_2,k_3).
$$

Systematic approach to NG

- Information in $B(k_1, k_2, k_3)$ is more than $P(k)$.
- In noisy data, we need templates to look for signal.
- \triangleright EFT of Infl. separates the theory of background from perturbations to
	- 1. reduce many underlying models to what is essential for predicting ζ , γ_{ii} spectra,
	- 2. organize the set of templates compatible with symmetries.

EFT of Inflation

- \triangleright The rolling inflaton field introduces preferred time slices, $\phi(t_u, \vec{x}) =$ constant.
- \triangleright Single-field inflation \equiv Massive gravity

$$
S = M_{\rm pl}^2 \int \sqrt{-g} [R - 3H^2(t) - \dot{H}(t) \delta g^{00} + c(t) (\delta g^{00})^2 + \cdots]
$$

- \triangleright Different underlying models differ in the coefficients of the expansion.
- \blacktriangleright This allows a systematic study of NG templates:

$$
B(k_1, k_2, k_3) = f_{\rm NL}^{\rm eq} F^{\rm eq} + f_{\rm NL}^{\rm orth} F^{\rm orth} + \cdots
$$

Pros and cons

Pros

- \blacktriangleright Ideal for precision modeling,
- \triangleright Conceptual; identification of ζ with Stueckelberg field, $t \to t + \pi$.
	- \blacktriangleright Eg. revealing a universal coupling during particle production:

$$
\mathcal{L}=\pi\partial_\mu\,T_0^\mu.
$$

 \triangleright Conceptual: identification of the symmetry breaking pattern with super-fluids.

Cons

- \triangleright Underlying physics is important and we have theoretical priors.
- \triangleright Most interesting variants of vanilla slow-roll inflation are not captured.

Beyond single-field inflation

Observations have ruled out simplest single-field models, which motivates multi-field ones:

- \blacktriangleright Extra scalar fields coupled to the inflaton.
- \triangleright Models with particle production, gauge field production, axion inflation.
- \blacktriangleright Warm inflation.
- \triangleright Different symmetry breaking patterns (solid, chromonatural, gaugid, . . .).

EFT for open systems and dissipation

Warm inflation Fang 80', Moss 85', Yokoyama, Maede 86', Berera,Fang 95',. . .

 \blacktriangleright Inflation is a theory of initial condition.

- It erases the pre-existing structures by stretching them to unobservably long wavelength.
- \blacktriangleright It makes the inflationary universe classically cold and empty. Repeated particle production keeps the universe warm and populated.

 \triangleright It stretches vacuum fluctuations in the UV into the observed cosmological perturbations. The origin of what we see are the subhorizon thermal fluctuations.

Energy budget

Warm inflation needs a continuous energy transfer

 $\phi \rightarrow X$ (another sector)

such that

$$
\frac{\rho_X}{\rho_{\rm tot}}\sim \epsilon \qquad \text{small but approximately fixed.}
$$

Assuming thermalization, the temperature can be much greater than H:

$$
T \gg H
$$
 is compatible with $T^4 \ll M_{\text{pl}}^2 H^2$.

Background evolution

Particle production back-reacts on the inflaton evolution

$$
\ddot{\phi} + (3H + \gamma)\dot{\phi} + V'(\phi) = 0,
$$

$$
\dot{\rho}_X + 4H\rho_X = \gamma\dot{\phi}^2 + \cdots
$$

This can have a warm slow-roll attractor.

Therefore, not only conceptually different but also the predictions of warm inflation for a given $V(\phi)$ are dramatically different from cold inflation. E.g. the number of e-folds.

Origin of perturbations

The transfer of energy $\phi \rightarrow X$ is not uniform. It is a random microscopic process.

 \triangleright This induces large (effectively classical) fluctuations already inside the horizon

 $\delta \phi \gg \delta \phi_{\text{vac}}$.

- \triangleright By the central limit theorem the observed spectrum is nearly Gaussian if $T \gg H$.
- \triangleright But the non-Gaussian features can be distinct from other scenarios. (We are sensitive to $\mathcal{O}(10^{-4})$ deviation from Gaussianity.)

EFT for Warm inflation: fluid $+$ inflaton

At $\lambda \gg 1/T$ the thermal bath is described by a fluid

$$
T_{\mu\nu}=\frac{4}{3}\rho u_{\mu}u_{\nu}+\frac{1}{3}\rho g_{\mu\nu},
$$

plus $O(H/T)$ dissipative corrections.

 \blacktriangleright However, there is one dissipative term that is essential

$$
-\nabla^2 \phi + V'(\phi) = \frac{1}{f} O_X = \underbrace{-\gamma(\rho) u^{\mu} \partial_{\mu} \phi}_{\langle \rangle \text{on long-}\lambda \text{ bgr}} + \underbrace{\xi}_{\text{noise}}.
$$

This couples ϕ to the fluid:

$$
\nabla^{\nu} \, T_{\mu\nu} = \partial_{\mu} \phi (\gamma u^{\mu} \partial_{\mu} \phi - \xi).
$$

Bastero-Gil, Berera, Moss, Ramos '14

Predictivity of EFT

 \triangleright We need $\gamma(\rho)$ and the statistics of ξ to calculate correlators of ζ .

- ► If $[O_X] = M^4$, then $\gamma \propto T^3$. By Fluctuation-Dissipation theorem $\langle \xi(x_{\rm ph}) \xi(y_{\rm ph}) \rangle \approx 2\gamma \mathcal{T} \delta^4(x_{\rm ph} - y_{\rm ph}).$
- \triangleright This allows to compute the correlation functions as a function of γ/H , without the knowledge of the underlying mechanism.
- \triangleright The only reliable underlying mechanism is sphaleron heating Berghaus,Graham,Kaplan '19.

${\sf Warm}\,\, \phi^4$ inflation мм, Gruzinov '22

 $N_e = 55$, $\phi \approx 11.6 M_{\text{pl}}$, $1 - n_s \approx 0.0337$, $\gamma \approx 5.34 H$. For $SU(2)$ gauge group T $\frac{1}{H} \approx 1200, \qquad r \approx 4.7 \times 10^{-7}.$ ϕ^2 0.95 0.96 0.97 0.98 0.99 1.00 *n*s 0.00 0.05 0.10 0.15 0.20 0.25 *r*0.002 **N=50** z
Po Conver Concave φ *Planck* TT,TE,EE+lowE *Planck* TT,TE,EE+lowE+lensing $+BK14+BAO$

Mehrdad Mirbabayi (ICTP) [EFT](#page-0-0)

index at *k* = 0.05Mpc1), and the equivalent result when *r* = 0

Warm inflation at the verge of discovery!

Open EFTs and stochastic inflation

Break-down of perturbations theory

 \blacktriangleright Light fields have large excursions

$$
\left\langle \phi^2 \right\rangle \sim \frac{H^4}{m^2}
$$

 \blacktriangleright The ratio of $\lambda \phi^4$ interaction to the mass term is

$$
\frac{\lambda \phi^4}{m^2 \phi^2} \sim \frac{\lambda H^4}{m^4}
$$

► This can be large, even for a technically natural mass $m^2 \sim \lambda H^2$

$$
\frac{\lambda \phi^4}{m^2 \phi^2} \sim \frac{1}{\lambda} \gg 1.
$$

Stochastic method in cosmological slicing

Starobinsky showed that

$$
\varphi(t) = \int d^3 \vec{x} \; W_L(a(t)\vec{x}) \; \phi(t, \vec{x}), \qquad W_L \text{ a window-function}
$$

satisfies the Fokker-Planck eq. as in Brownian motion

$$
\partial_t p(t,\varphi) = \frac{1}{8\pi^2} \partial_{\varphi}^2 p(t,\varphi) + \frac{1}{3} \partial_{\varphi} (V'(\varphi) p(t,\varphi)).
$$

Stochastic method in the static patch MM '20

In the static patch there are thermal fluctuations.

 \blacktriangleright There is a close analogy with Browning motion:

$$
\varphi(t)=\int d^3\vec{x}W_L(\vec{x})\phi(t,\vec{x}),
$$

in the environment of all other DOFs, which have short-lived correlations.

Open EFT for φ

 \blacktriangleright The reduced density matrix

$$
p(t,\varphi)=[\mathrm{Tr}_{env.}\rho(t)]_{\varphi_L=\varphi_R=\varphi}
$$

satisfies FP eq.

$$
\partial_t p(t,\varphi) = \frac{1}{8\pi^2} \partial^2_\varphi p(t,\varphi) + \frac{1}{3} \partial_\varphi (V'(\varphi) p(t,\varphi)) + \cdots
$$

 \triangleright One can show that FP is just the leading term in a systematic expansion in $1/(Ht_\lambda) \sim \sqrt{\lambda}$.

 \triangleright The evolution remains Markovian to all orders, as in hydrodynamics.

EFT of LSS

Cosmological perturbations as seen today

 \triangleright Cosmological perturbations grow during matter domination and collapse.

 \triangleright To extract information from LSS surveys, this nonlinear evolution has to be accounted for.

 \triangleright EFT of LSS is a tool to organize the nonlinear effects without making assumptions about galaxy formation details.

 \triangleright This is important because surveys are reaching sub-percent precision in the weakly nonlinear regime.

Cosmic fluid?

 \triangleright The idea is to treat matter at large scales as a pressure-less fluid

$$
\partial_t(a^3\rho)+\partial_i(a^2\rho v^i)=0,
$$

$$
\partial_t v^i + Hv^i + \frac{1}{a}v^j \partial_j v^i + \frac{1}{a} \partial_i \phi = \left[-\frac{1}{a^2 \rho} \partial_j \tau^{ij}\right],
$$

where $\rho=\bar\rho(1+\delta)$, v^i is peculiar velocity.

 \blacktriangleright This is not a normal fluid, because

- 1. It's atoms (halos) are getting bigger by mergers.
- 2. The collision time between the atoms is the age of the universe.

Cosmic fluid?

 \triangleright Generically, an EFT with no separation of time-scales is useless.

 \triangleright EFT of LSS is useful because we only want to make a limited use:

In start from $\delta_{\rm in} \ll 1$ and evolve until $\delta < 1$.

- \triangleright In contrast, classical EFTs like hydrodynamics and GR are fully nonlinear systems.
	- ► They break when gradients are big (e.g. $R \sim M_{\rm pl}^2$), not perturbations $(h_{\mu\nu} \sim 1)$.

Perturbative expansion

 \triangleright We can expand

$$
\delta(t,\vec{k}) = \sum_{n=1}^{\infty} \int F_n(t,\vec{k}; \{\vec{q}_i\}) \delta_{\text{in}}(\vec{q}_1) \cdots \delta_{\text{in}}(\vec{q}_n).
$$

and keep a finite number of terms for a given precision.

At a fixed order in $\delta_{\rm in}$, any non-local term on the RHS of

$$
\partial_t v^i + Hv^i + \frac{1}{a}v^j \partial_j v^i + \frac{1}{a} \partial_i \phi = \left[-\frac{1}{a^2 \rho} \partial_j \tau^{ij} \right],
$$

is equivalent to a finite number of local terms.

 \blacktriangleright This allows a systematic way of producing templates \tilde{F}_n that capture the short scale unknowns.

EFT of LSS, pros and cons

Pros

- \blacktriangleright It is robust.
- It can reach very high precision at low k .

Cons

- \triangleright We know some things about galaxy formation, and interested to learn about it.
- Introduces lots of parameters, and throws away short-distance data.

An application Ivanov, Simonović, Zaldarriaga '19

