From Quantum Fields to Stochastic Random Variables: Why Starobinsky's Formalism Works

Richard Woodard (University of Florida, USA)

From Inflation to Structure Formation (Nov 6-8, 2024)

Work with Nick Tsamis & Shun-Pei Miao

Meet the Massless, Minimally Coupled Scalar

Lagrangian & coordinates

$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial_{\nu}\phi g^{\mu\nu}\sqrt{-g} \qquad ds^{2} = -dt^{2} + a^{2}(t)d\vec{x} \cdot d\vec{x} = a^{2}\left[-d\eta^{2} + d\vec{x} \cdot d\vec{x}\right]$$

• Propagator has a ``tail'' on de Sitter with $a(t) = e^{Ht}$

$$D = 4 \rightarrow i\Delta(x; x') = \frac{1}{4\pi^2} \frac{1}{aa'\Delta x^2} - \frac{H^2}{8\pi^2} \ln\left[\frac{1}{4}H^2\Delta x^2\right] \qquad \Delta x^2 \equiv \eta_{\mu\nu}(x - x')^{\mu}(x - x')^{\nu}$$

• For general dimension D with $k \equiv \frac{H^{D-2}}{(4\pi)^{D/2}} \frac{\Gamma(D-1)}{\Gamma(\frac{D}{2})}$

$$\frac{\Gamma(\frac{D}{2}-1)}{4\pi^{D/2}} \frac{1}{[aa'\Delta x^{2}]^{\frac{D}{2}-1}} + \frac{\Gamma(\frac{D}{2}+1)}{8\pi^{\frac{D}{2}}(D-4)} \frac{H^{2}}{[aa'\Delta x^{2}]^{\frac{D}{2}-2}} - k[\pi\cot(\frac{D\pi}{2}) - \ln(aa')] + \frac{\Gamma(\frac{D}{2}+2)}{64\pi^{\frac{D}{2}}(D-6)} \frac{H^{4}}{[aa'\Delta x^{2}]^{\frac{D}{2}-3}} + (\frac{D-1}{2D})kH^{2}aa'\Delta x^{2} + \cdots$$

• Dimensionally regulated coincidence limits $(x'^{\mu} \rightarrow x^{\mu})$

$$i\Delta(x;x') \rightarrow -k\pi \cot\left(\frac{D\pi}{2}\right) + 2k \ln(a) , \partial_{\mu}i\Delta(x;x') \rightarrow aHk\delta_{\mu}^{0} , \partial_{\mu}\partial_{\nu}'i\Delta(x;x') \rightarrow -\left(\frac{D-1}{D}\right)H^{2}kg_{\mu\nu}$$

Mode Function "Freeze-In" Causes the Tail

• Mode sum for D=4

•
$$i\Delta(x;x') = \int \frac{d^3k}{(2\pi)^3} e^{i\vec{k}\cdot\Delta\vec{x}} \{\theta(t-t')u(t,k)u^*(t',k) + \theta(t'-t)u^*(t,k)u(t',k)\}$$

• Late time expansion for $k \ll Ha(t)$

•
$$u(t,k) = \frac{H}{\sqrt{2k^3}} \left[1 - \frac{ik}{Ha} \right] \exp\left[\frac{ik}{Ha}\right] \rightarrow \frac{H}{\sqrt{2k^3}} \left[1 + \frac{1}{2} \left(\frac{k}{Ha}\right)^2 + \frac{i}{3} \left(\frac{k}{Ha}\right)^3 + \cdots \right]$$

- Finite mode sum for H < k < Ha
 - $\frac{4\pi}{(2\pi)^3} \int_H^{Ha} dk \ k^2 \times \frac{H^2}{2k^3} = \frac{H^2}{4\pi^2} \ln(a)$ growth from continual freeze-in, not IR cutoff
- Note that this occurs for any inflationary geometry

•
$$\ddot{u} + 3H\dot{u} + \frac{k^2}{a^2}u = 0$$
 \Rightarrow $\ddot{u} + 3H\dot{u} \cong 0$

Tail Causes Interacting Correlators to Grow

Scalar Potential Models

•
$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial_{\nu}\phi g^{\mu\nu}\sqrt{-g} - V(\phi)\sqrt{-g}$$

- E.g., $\langle T_{\mu\nu}\rangle=(\rho+p)u_{\mu}u_{\nu}+pg_{\mu\nu}$ for $V=\frac{\lambda}{4!}\phi^4$ at 2-loop order
 - $\rho = \frac{\lambda H^4}{2^7 \pi^4} \left[\ln(a) \right]^2 + O(\lambda^2)$
 - $p = -\frac{\lambda H^4}{2^7 \pi^4} \left\{ [\ln(a)]^2 + \frac{2}{3} \ln(a) \right\} + O(\lambda^2)$
- Notation:
 - $\lambda[\ln(a)]^2$ is "leading logarithm" $\lambda \ln(a)$ is "sub-leading"
- What happens after $\lambda[\ln(a)]^2 \gg 1$?

Starobinsky's Formalism has the answers!

• Replace Heisenberg eqn for $\phi(x)$ with Langevin eqn for $\phi(x)$

•
$$\ddot{\phi} + (D - 1)H\dot{\phi} - \frac{\nabla^2}{a^2}\phi = -V'(\phi)$$
 \Rightarrow $3H(\dot{\phi} - \dot{\phi}_0) = -V'(\phi)$
• $\varphi_0(t, \vec{x}) = \int_H^{Ha} \frac{d^3k}{(2\pi)^3} \frac{H}{\sqrt{2k^3}} e^{i\vec{k}\cdot\vec{x}} \left\{ \alpha\left(\vec{k}\right) + \alpha^{\dagger}\left(-\vec{k}\right) \right\} \left[\alpha(\vec{k}), \alpha^{\dagger}(\vec{q}) \right] = (2\pi)^3 \delta^3(\vec{k} - \vec{q})$

- These are completely different theories!
 - $[\phi(x), \phi(x')] \neq 0$ & its correlators contain UV divergences
 - $[\varphi(x), \varphi(x')] = 0$ & its correlators are UV finite
- But correlators of ϕ and φ agree at leading logarithm order \Rightarrow WHY?
 - And where did $\varphi_0(t, \vec{x})$ come from?

Remembering Alexei Starobinsky

- He was a genius who saw the connection directly
 - But many QFT experts doubted (including me)
 - Some cosmologists even thought QFT is wrong
- I met Alexei in 2002 at a conference in Tomsk
- I spoke about exact QFT corrections on de Sitter
 - MMCS ϕ^4 (Onemli) \rightarrow $\langle T_{\mu\nu} \rangle$ at 2 loops
 - SQED (Prokopec & Tornkvist) $\rightarrow i[^{\mu}\Pi^{\nu}](x;x')$ at 1 loop
- My question: "What is wrong with these results?"
- Alexei's answer: "I don't think anything is wrong with them. And they follow from stochastic inflation!"
 - I didn't believe him at first, but he was right
- Alexei's challenge: "Devise a proof."
 - Alexei sometimes set difficult tasks!

The Proof (with Tsamis) \rightarrow gr-qc/0505115

- Start with exact Heisenberg field equation
 - $-\partial_{\mu}\left[\sqrt{-g}\ g^{\mu\nu}\partial_{\nu}\phi\right] = -\sqrt{-g}\ V'(\phi)$
- Integrate to get Yang-Feldman Equation (still exact)
 - $\phi(t,\vec{x}) = \phi_0(t,\vec{x}) \int d^4x' \sqrt{-g(t',\vec{x}')} i\theta(t-t') [\phi_0(t,\vec{x}),\phi_0(t',\vec{x}')] V'(\phi(t',\vec{x}'))$
 - $\phi_0(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \left\{ u(t,k)e^{i\vec{k}\cdot\vec{x}}\alpha(\vec{k}) + u^*(t,k)e^{-i\vec{k}\cdot\vec{x}}\alpha^{\dagger}(\vec{k}) \right\}$
- Leading logarithm order requires EVERY pair of free fields to contribute a logarithm
 - Logarithms come only from the H < k < Ha(t) part of the mode sum
 - And only need either $u(t,k) \to \frac{H}{\sqrt{2k^3}}$ or $u(t,k) \to \frac{H}{\sqrt{2k^3}} \times \frac{i}{3} \left(\frac{k}{Ha}\right)^3$ for commutator
- IR truncation changes everything but preserves leading logarithms
 - $\varphi(t,\vec{x}) = \varphi_0(t,\vec{x}) \int d^4x' \; \frac{\theta(t-t')}{3H} \; \delta^3(\vec{x} \vec{x}') \; V'(\varphi(t',\vec{x}')) = \varphi_0(t,\vec{x}) \frac{1}{3H} \int_0^t dt' \; V'(\varphi(t',\vec{x})) \; dt' \; V'(\varphi(t'$
 - $\varphi_0(t,\vec{x}) \equiv \int \frac{d^3k}{(2\pi)^3} \theta(k-H)\theta(Ha-k) \left\{ \frac{H}{\sqrt{2k^3}} e^{i\vec{k}\cdot\vec{x}} \alpha(\vec{k}) + \frac{H}{\sqrt{2k^3}} e^{-i\vec{k}\cdot\vec{x}} \alpha^{\dagger}(\vec{k}) \right\}$
- Taking the time derivative gives Starobinsky's Langevin equation!
 - $\dot{\varphi} = \dot{\varphi}_0 \frac{1}{3H}V'(\varphi) \implies 3H(\dot{\varphi} \dot{\varphi}_0) = -V'(\varphi)$

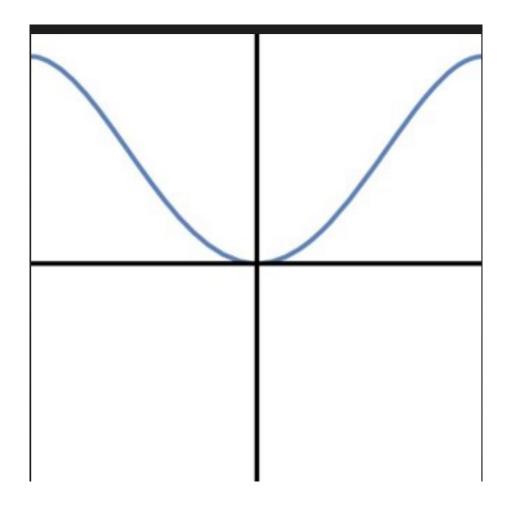
Using Starobinsky's Formalism

- Can just solve for $\varphi(t, \vec{x})$ in terms of φ_0
 - Iterate $\varphi(t, \vec{x}) = \varphi_0(t, \vec{x}) \frac{1}{3H} \int_0^t dt' \ V'(\varphi(t', \vec{x}))$
 - E.g. $\varphi(t) = \varphi_0(t) \frac{\lambda}{18H} \int_0^t dt' \, \varphi_0^3(t') + \frac{\lambda^2}{108H^2} \int_0^t dt' \, \varphi_0^2(t') \int_0^{t'} dt'' \, \varphi_0^3(t'') + \cdots$
 - Gives leading logarithms of $\langle T_{\mu\nu} \rangle$ at FOUR loop order for quartic interaction!
- Late time limit from Fokker-Planck Equation for $ho(t, \varphi)$
 - $\dot{\rho}(t,\varphi) = \frac{1}{3H} \frac{\partial}{\partial \varphi} [V'(\varphi)\rho(t,\varphi)] + \frac{H^3}{8\pi^2} \frac{\partial^2}{\partial \varphi^2} [\rho(t,\varphi)]$
 - $\langle F(\varphi(t)) \rangle = \int d\varphi \rho(t, \varphi) F(\varphi)$
- If $V(\varphi)$ is bounded below $\rho(t,\varphi)$ approaches a constant
 - $\rho(\infty, \varphi) = N \exp\left[-\frac{8\pi^2}{3H^4}V(\varphi)\right]$ Starobinsky & Yokoyama astro-ph/9407016

Transparent Physical Interpretation

- Inflationary particle production forces field up its potential
 - Easier to fluctuate out than in
- Classical force eventually stops the growth
 - On average
- But highly nontrivial relations

•
$$\langle \varphi^{2n} \rangle \rightarrow \frac{\Gamma(\frac{n}{2} + \frac{1}{4})}{\Gamma(\frac{1}{4})} \left(\frac{9H^4}{\pi^2 \lambda}\right)^{n/2}$$



To Recapitulate

- QFT doesn't invalidate stochastic formalism, nor is it supplanted by SF
 - Relation is stochastic formalism reproduces QFT at leading logarithm order
 - True for scalar potential models
- Two key points in derivation are:
 - 1. Each pair of free fields must contribute a logarithm to reach leading logarithm order
 - 2. Logarithms come from H < k < Ha(t) and IR limit of mode function
- Stochastic "jitter" $\varphi_0(t,\vec{x})$ is the IR-truncated Yang-Feldman free field

Beyond Scalar Potential Models

- 2 kinds of fields
 - "Active" with tails
 MMC scalars & gravitons
 - "Passive" no tails other scalars, fermions & photons
- Wrong to treat passives stochastically
 - They don't cause logs but can modify them
 - Their contributions come from IR to UV & involve the full mode functions
- Instead integrate out passives in constant active background
 - Gives a scalar (effective) potential model
 - Treat THAT stochastically

Two Examples of Integrating Out Passives

- Fermions Yukawa-coupled to a real scalar (gr-qc/0602110)
 - $\mathcal{L} = \overline{\Psi} e_a^{\mu} \gamma^a \left(i \partial_{\mu} \frac{1}{2} A_{\mu b c} J^{b c} \right) \Psi \sqrt{-g} \frac{1}{2} \partial_{\mu} \phi \partial_{\nu} \phi g^{\mu \nu} \sqrt{-g} [V(\phi) + f \phi \overline{\Psi} \Psi] \sqrt{-g}$
 - Constant ϕ gives a fermion mass of $m = f\phi$
 - $0 = \partial_{\mu} \left[\sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi \right] \{ V'(\phi) fi[iS_i](x;x) \} \sqrt{-g} \rightarrow \partial_{\mu} \left[\sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi \right] V'_{eff}(\phi) \sqrt{-g}$
 - UV divergences are absorbed in $V'(\phi)$
- Photons minimally coupled to a complex scalar (arXiv:0707.0847)
 - $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F_{\rho\sigma}g^{\mu\rho}g^{\nu\sigma}\sqrt{-g} (\partial_{\mu} ieA_{\mu})\phi^*(\partial_{\nu} + ieA_{\nu})\phi g^{\mu\nu}\sqrt{-g} V(\phi^*\phi)\sqrt{-g}$
 - Constant ϕ gives a photon mass of $m^2=2e^2\phi^*\phi$ (work in Lorenz gauge)

$$0 = \partial_{\mu} \left[\sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi \right] - \phi \left\{ V'(\phi^* \phi) + e^2 g^{\mu\nu} i \left[_{\mu} \Delta_{\nu}\right](x; x) \right\} \sqrt{-g}$$

$$\rightarrow \partial_{\mu} \left[\sqrt{-g} g^{\mu\nu} \partial_{\nu} \phi \right] - \phi V'_{eff} (\phi^* \phi) \sqrt{-g}$$

Complications from Differentiated Actives

- Order 1 contributions come from both UV & IR
 - Exact dim. reg. gives $\left\langle \partial_{\mu}\phi(x)\partial_{\nu}\phi(x)\right\rangle = -g_{\mu\nu} \times \frac{H^{D}}{2(4\pi)^{D/2}} \frac{\Gamma(D)}{\Gamma\left(\frac{D}{2}+1\right)}$
 - Any purely IR stochastic result must be positive for $\mu = \nu$
- Renormalization matters
 - Primitive $\left(\frac{(2H)^{D-4}}{D-4}\right)$ Counterterm $\left(\frac{(\mu a)^{D-4}}{D-4}\right) = -\ln\left(\frac{\mu a}{2H}\right) + O(D-4)$
 - No stochastic formalism will recover these logs, but RG was designed to do it
- Crucial to stay focused on large logarithms
 - Avoid mysticism about open systems &/or course-graining
 - Always check formalism against explicit computations
- Three examples
 - 1. Nonlinear Sigma Models (no indices or gauge issue)
 - 2. Scalar loop corrections to gravity (no gauge issue)
 - 3. Quantum gravity (larger effects, but more complicated)

Nonlinear Sigma Models on de Sitter (arXiv:2110.08715)

- Single Field Model (unit S-matrix but interesting background & kinematics)
 - $\mathcal{L} = -\frac{1}{2} \left(1 + \frac{\lambda}{2} \Phi \right)^2 \partial_{\mu} \Phi \partial_{\nu} \Phi g^{\mu\nu} \sqrt{-g}$ • $\frac{\delta S}{\delta \Phi} = \left(1 + \frac{\lambda}{2} \Phi \right) \partial_{\mu} \left[\left(1 + \frac{\lambda}{2} \Phi \right) \sqrt{-g} g^{\mu\nu} \partial_{\nu} \Phi \right] = 0$
- Integrate out differentiated fields in constant background from interaction

•
$$\Phi(x) = \Phi_0 \rightarrow \langle \Omega | \Phi(x) \Phi(x') | \Omega \rangle = \frac{i\Delta(x;x')}{\left(1 + \frac{\lambda}{2} \Phi_0\right)^2}$$

•
$$-V'_{\text{eff}}(\Phi_0)\sqrt{-g} \equiv \left(1 + \frac{\lambda}{2}\Phi_0\right)\partial_\mu \left[\frac{\lambda}{4}\sqrt{-g}g^{\mu\nu}\partial_\nu\langle\Omega|\Phi^2|\Omega\rangle\right] \rightarrow \frac{3\lambda H^4}{16\pi^2}\frac{\sqrt{-g}}{1+\frac{\lambda}{2}\Phi_0}$$

• $V_{\rm eff}(\Phi) = \frac{3H^4}{8\pi^2} \ln \left| 1 + \frac{\lambda}{2} \Phi \right|$ a scalar potential model! \rightarrow use Starobinsky

•
$$\left(1 + \frac{\lambda}{2}\Phi\right)\partial_{\mu}\left[\left(1 + \frac{\lambda}{2}\Phi\right)\sqrt{-g}g^{\mu\nu}\partial_{\nu}\Phi\right] = -V'_{\text{eff}}(\Phi)\sqrt{-g}$$
 \Rightarrow $3H(\dot{\varphi} - \dot{\varphi}_0) = -\frac{V'_{\text{eff}}(\varphi)}{\left(1 + \frac{\lambda}{2}\varphi\right)^2}$

• VEV shows "classical" roll-down accelerated by stochastic jitter

•
$$\langle \Omega | \Phi | \Omega \rangle = \frac{2}{\lambda} \left\{ \left[1 - \frac{\lambda^2 H^2}{8\pi^2} \ln(a) \right]^{1/4} - 1 \right\} - \frac{3\lambda^3 H^4}{2^8 \pi^4} \ln(a)^2 + O(\lambda^5)$$

Curvature-Dependent Renormalizations

•
$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}A\partial_{\nu}Ag^{\mu\nu}\sqrt{-g} - \frac{1}{2}\left(1 + \frac{\lambda}{2}A\right)^{2}\partial_{\mu}B\partial_{\nu}Bg^{\mu\nu}\sqrt{-g}$$

•
$$\Delta \mathcal{L} = -\frac{1}{2}C_{B1} \square B \square B \sqrt{-g} - \frac{1}{2}C_{B2}R\partial_{\mu}B\partial_{\nu}Bg^{\mu\nu}\sqrt{-g}$$

• The C_{B1} term intrinsically HD, but the C_{B2} term is $\delta Z_B = C_{B2}R$

•
$$C_{B2} = \frac{\lambda^2 \mu^{D-4}}{4(4\pi)^{D/2}} \frac{\Gamma(D-1)}{\Gamma(\frac{D}{2})} \frac{\pi \cot(\frac{D\pi}{2})}{D(D-1)} - \frac{\lambda^2 \mu^{D-4}}{32\pi^{D/2}} \frac{\Gamma(\frac{D}{2}-1)}{2(D-3)(D-4)} \left(\frac{D-2}{D-1}\right)$$

•
$$\gamma_B \equiv \frac{\partial \ln(1+\delta Z_B)}{\partial \ln(\mu^2)} = -\frac{\lambda^2 H^2}{32\pi^2} + O(\lambda^4)$$
 and $\beta = O(\lambda^5)$

Callan-Symanzik Equation

•
$$\left[\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial \lambda} + 2\gamma_B\right] P_B(t,r) = 0$$
 and $P_B(t,r) \to \frac{KH}{4\pi} \ln(Hr) + O(\lambda^2)$

•
$$\mu \to r$$
 \rightarrow $P_B(t,r) \to \frac{KH}{4\pi} \ln(Hr) \left\{ 1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4) \right\}$

Large Logarithms in Nonlinear Sigma Models Stochastic and Renormalization Group

Single Field Model

Double Field Model

	Quantity	Leading Logarithms	Quantity	Leading Logarithms
	w deficitly	Loading Logarithins	$u_A(\eta, k)$	$\left\{1-\frac{\lambda^2 H^2}{32\pi^2}\ln(a) + O(\lambda^4)\right\} \times \frac{H}{\sqrt{2k^3}}$
	$u_{\Phi}(\eta, k)$	$\left\{1 + \frac{\lambda^2 H^2}{32\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H}{\sqrt{2k^3}}$	$u_B(\eta, k)$	$\left\{1+0+O(\lambda^4)\right\} \times \frac{H}{\sqrt{2k^3}}$
	$P_{\Phi}(\eta,r)$	$\left\{1 + \frac{\lambda^2 H^2}{32\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{KH}{4\pi} \ln(Hr)$	$P_A(\eta,r)$	$\left\{1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(a) + \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4)\right\} \times \frac{KH}{4\pi} \ln(Hr)$
			$P_B(\eta,r)$	$\left\{1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4)\right\} \times \frac{KH}{4\pi} \ln(Hr)$
	$\langle \Omega \Phi(x) \Omega \rangle$	$-\left\{1 + \frac{15\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{\lambda H^2}{16\pi^2} \ln(a)$	$\langle \Omega A(x) \Omega \rangle$	$\left\{1 + \frac{\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{\lambda H^2}{16\pi^2} \ln(a)$
			$\langle \Omega A^2(x) \Omega \rangle_{\rm ren}$	$\left\{1 - \frac{\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H^2}{4\pi^2} \ln(a)$
	$\langle \Omega \Phi^2(x) \Omega \rangle_{\rm ren}$	$\left\{1 + \frac{15\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H^2}{4\pi^2} \ln(a)$	$\langle \Omega B(x) \Omega \rangle$	0
			$\langle \Omega B^2(x) \Omega \rangle_{\rm ren}$	$\left\{1 + \frac{3\lambda^2 H^2}{32\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H^2}{4\pi^2} \ln(a)$

MMCS Corrections to Gravity (arXiv:2405.00116)

•
$$-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$$

- Effective field equation for linearized gravity ($\kappa^2 = 16\pi G$)
 - $\mathcal{L}^{\mu\nu\rho\sigma} \kappa h_{\rho\sigma}(x) \int d^4x' \left[^{\mu\nu} \Sigma^{\rho\sigma}\right](x; x') \kappa h_{\rho\sigma}(x') = 8\pi G T^{\mu\nu}(x)$
- Gravitational radiation

•
$$C_{0i0j}(t, \vec{x}) = C_{0i0j}^{(0)}(t, \vec{x}) \left\{ 1 - \frac{3\kappa^2 H^2}{160\pi^2} \times \ln[a(t)] + O(\kappa^4) \right\}$$

- Response to $T^{\mu\nu} = -\delta_0^{\mu} \delta_0^{\nu} M a \delta^3(\vec{x})$
 - $ds^2 = -[1 2\Psi(t,r)]dt^2 + a^2(t)[1 2\Phi(t,r)]d\vec{x} \cdot d\vec{x}$

•
$$\Psi(t,r) = \frac{GM}{ar} \left\{ 1 + \frac{\kappa^2}{320\pi^2 a^2 r^2} - \frac{3\kappa^2 H^2}{160\pi^2} \times \ln[aHr] + O(\kappa^4) \right\}$$

•
$$\Phi(t,r) = \frac{GM}{ar} \left\{ -1 + \frac{\kappa^2}{960\pi^2 a^2 r^2} + \frac{3\kappa^2 H^2}{160\pi^2} (\ln[aHr] + 1) + O(\kappa^4) \right\}$$

Integrating out differentiated scalars (arXiv:2405.01024)

- Constant scalar same as constant $h_{\mu\nu}$ \rightarrow constant $\tilde{g}_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa h_{\mu\nu}$ But $g_{\mu\nu} = a^2 \tilde{g}_{\mu\nu}$ with constant $\tilde{g}_{\mu\nu}$ is de Sitter with $H^2 \rightarrow -\tilde{g}^{00} H^2$!

$$\Gamma^{\rho}_{\mu\nu} = aH \left(\delta^{\rho}_{\mu} \delta^{0}_{\nu} + \delta^{\rho}_{\nu} \delta^{0}_{\mu} - \tilde{g}^{0\rho} \tilde{g}_{\mu\nu} \right) \rightarrow R^{\rho}_{\sigma\mu\nu} = -\tilde{g}^{00}H^{2} \left(\delta^{\rho}_{\mu} g_{\sigma\nu} - \delta^{\rho}_{\nu} g_{\sigma\mu} \right)$$

- Integrate out $\partial \phi \partial \phi$ with $\partial_{\mu} \partial_{\nu}' i \Delta(x; x')_{x'=x} = -\frac{3H^4}{32\pi^2} \times g_{\mu\nu}$
 - E.g. $T_{\mu\nu} = \partial_{\mu}\varphi\partial_{\nu}\varphi \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\partial_{\rho}\varphi\partial_{\sigma}\varphi \rightarrow \frac{3}{22\pi^{2}}\left[-\tilde{g}^{00}H^{2}\right]^{2}g_{\mu\nu}$
 - NB a negative contribution to the cosmological constant & arbitrarily large
- - $\Delta \mathcal{L} = \frac{R^2 \ln(R) \sqrt{-g}}{2^8 \cdot 2 \cdot \pi^2}$ gives fully conserved $T_{\mu\nu}$
 - Agrees with induced $T_{\mu\nu}$ for constant $\tilde{g}_{\mu\nu}$
 - Effective field equations do not explain any of the leading logs
- Induced $T_{\mu\nu}$ for QG more complicated
 - But can reconstruct using solutions for potentials (if not RG effects)

Curvature-Dependent Field Strength Renormalization

- 1-Loop C-terms: $\Delta \mathcal{L} = c_1 R^2 \sqrt{-g} + c_2 C^{\alpha\beta\gamma\delta} C_{\alpha\beta\gamma\delta} \sqrt{-g}$ $c_1 = \frac{\mu^{D-4} \Gamma\left(\frac{D}{2}\right)}{2^8 \pi^{D/2}} \frac{(D-2)}{(D-1)^2 (D-3)(D-4)}$ $c_2 = \frac{\mu^{D-4} \Gamma\left(\frac{D}{2}\right)}{2^8 \pi^{D/2}} \frac{2}{(D+1)(D-3)^2 (D-4)}$
 - R^2 induces curvature-dependent renormalizations of $G \& \Lambda = (D-1)H^2$ $R^{2} = [R - D\Lambda]^{2} + 2D\Lambda[R - (D - 2)\Lambda] + D(D - 4)\Lambda^{2}$
 - C^2 does also from ∂_0^2 (which surprised me!)
- Callan-Symanzik Equation explains all three leading logs
 - Can tell from the exact calculation that all three logs come from renormalization
 - Likely not true for pure QG, but exact calculation will tell

Conclusions

- Starobinsky's formalism proven to work for scalar potential models
 - Reproduces the leading logarithms at each order
 - Stochastic "jitter" is IR-truncated free field of Yang-Feldman equation
- Inflationary QFT produces (at least) three kinds of large logarithms
 - "Tail term" logs (original stochastic formalism) $\rightarrow i\Delta(x;x') = \frac{1}{4\pi^2 a a' \Delta x^2} \frac{H^2}{8\pi^2} \ln(H^2 \Delta x^2)$
 - Three kinds of induced stochastic potential models from integrating out fields
 - "RG" logs from renormalization $\Rightarrow \frac{(2H)^{D-4}}{D-4} \frac{(\mu a)^{D-4}}{D-4} = -\ln\left(\frac{\mu a}{2H}\right) + O(D-4)$
- Resummation schemes exist for
 - Scalar potential models → all stochastic
 - Scalars coupled to other fields (SQED, Yukawa) → induced stochastic potential models
 - Nonlinear sigma models
 both induced stochastic potential models & RG
 - Graviton corrections to matter (EM, MMCS, Dirac) → all RG
 - Scalar corrections to gravity → all RG
- Next step: quantum gravity (expect both stochastic & RG)