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Meet the Massless, Minimally Coupled Scalar

* Lagrangian & coordinates
L=-22,00,9g"y=g ds*=—dt*+a*(t)dX -dX = a*|—-dn?+dx-dx]

* Propagator has a ““tail” on de Sitter with a(t) = e''t
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* For general dimension D with k =
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* Dimensionally regulated coincidence limits (x'# — x*)
iA(x; x") = —km cot(ZE) + 2k In(a) , 0,iA(x;x") —» aHkS) |, 0,04iA(x;x") = — (?) H%kg,



Mode Function “Freeze-In” Causes the Tail

e Mode sumfor D = 4

¢ iA(x;x") = f(d ')‘3 e k(g (t — t"ult, Ru*(t', k) + 0t —t)u*(t, ku(t' k)}

* Late time expansion for k « Ha(t)
B 2 ik’

tult k) = W[l__ eXp[ ] el Ha) +§(H_a) +]

* Finite mode sum for H < k < Ha
2
(2n)3f dk k* X Ij( ﬁtz In(a) growth from continual freeze-in, not IR cutoff
* Note that this occurs for any inflationary geometry
2
e i+ 3HU + —u = >  i+3Hu=0



Tail Causes Interacting Correlators to Grow

e Scalar Potential Models

* L = _%a,uqbavqbguv\/jg - V(qb)\/jg
* E.g., (Tw> = (p + puyu, +pg,, forV = %gb‘L at 2-loop order

c p =22 In(@)]? +0(3?)
+p = =2 {In@72 + 2@} + 0(22)

* Notation:
 A[In(a)]? is “leading logarithm” Aln(a) is “sub-leading”
« What happens after A[In(a)]? > 17?



Starobinsky’s Formalism has the answers!

* Replace Heisenberg eqn for ¢ (x) with Langevin egn for ¢ (x)

. . V2 p . . /
cFH(D-DHG-Zp=-V'@) D 3H©G o) = V()
> Ha d3k H 3.7 - - = S =,
c 006, = [ T ame®F a (k) + ot (<k)}  [a(o),at @] = @m)?6%(k - )
* These are completely different theories!
e [p(x),dp(x")] # 0 & its correlators contain UV divergences
* [p(x),p(x")] = 0 & its correlators are UV finite

 But correlators of ¢ and ¢ agree at leading logarithm order = WHY?
* And where did ¢, (t, X) come from?



Remembering Alexei Starobinsky

He was a genius who saw the connection directly
 But many QFT experts doubted (including me)
* Some cosmologists even thought QFT is wrong

| met Alexei in 2002 at a conference in Tomsk

| spoke about exact QFT corrections on de Sitter

* MMCS ¢* (Onemli) = (T,,) at 2 loops

* SQED (Prokopec & Tornkvist) = i[*IT1V] (x; x") at 1 loop
My question: “What is wrong with these results?”

Alexei’s answer: “l don’t think anything is wron§ with
them. And they follow from stochastic inflation!”

* | didn’t believe him at first, but he was right

e Alexei’s challenge: “Devise a proof.”
* Alexei sometimes set difficult tasks!




The Proof (with Tsamis) =» gr-qc/0505115

Start with exact Heisenberg field equation
+ —3,[v=g g"o,] = —y=g V'(¢)
Integrate to get Yang-Feldman Equation (still exact)
* d(t,X) = ¢o(t X) = [d*x' =g, %) i6(t — t)[¢o(t, X), po(t, )] V'($(t', X))
o Po(t,x) = f( —~ {u(t ke *a (k) + u*(t, k)e ik xa*(k)}

Leading logarithm order requires EVERY pair of free fields to contribute a logarithm
* Logarithms come only from the H < k < Ha(t) part of the mode sum

. H H _ifk)>
* And only need eltheru(t,k)em or u(t,k)emxg(%) for commutator

IR truncation changes everything but preserves leading logarithms
* 960 = @0t 7) — [dt At) 532 — #) V(0(t, ) = 9o (6,R) — == [L dt’ V(o(t', %))

> k2 T H iRk 4,7
. 0o(t, %) zf( )38(k H)@(Ha—k){ e Fa(k) + e ot (o))

Taking the time derivative gives Starobinsky’s Langevin equation!
c 9 =go—=-V'(9) D 3H(p—¢o) = —V'(9)




Using Starobinsky’s Formalism

* Can just solve for @ (t, x) in terms of @,
e lterate @(t,X) = ¢@y(t, %) — ift dt’ V'(e(t', x))
/ t / / t! r 2
* B8 p(0) = o(0) — g fy At 93 () + 1 [yt @f () fy de" @3 () + -+
* Gives leading logarithms of ( MV) at FOUR loop order for quartic interaction!

e Late time limit from Fokker- Planck Equation for p(t, @)

* (L) = 3_H£[ (@)p(t, @) +7£[p(t 21
* (Fo(0)) = [ dop(t, )F ()
* If V(¢) is bounded below p(t, ¢) approaches a constant

2
* p(co0,p) = N exp [—%V(cp)] Starobinsky & Yokoyama astro-ph/9407016




Transparent Physical Interpretation

* Inflationary particle production
forces field up its potential

e Easier to fluctuate out than in

* Classical force eventually stops
the growth

* On average

* But highly nontrivial relations
rG+y) (9H4)n/ 2

H
rQ \ma

R <g02n>




To Recapitulate

* QFT doesn’t invalidate stochastic formalism, nor is it supplanted by SF
* Relation is stochastic formalism reproduces QFT at leading logarithm order
* True for scalar potential models

* Two key points in derivation are:

1. Each pair of free fields must contribute a logarithm to reach leading
logarithm order

2. Logarithms come from H < k < Ha(t) and IR limit of mode function
* Stochastic “jitter” @, (t, x) is the IR-truncated Yang-Feldman free field



Beyond Scalar Potential Models

* 2 kinds of fields
e “Active” with tails = MMC scalars & gravitons
* “Passive” no tails =» other scalars, fermions & photons

* Wrong to treat passives stochastically
* They don’t cause logs but can modify them
e Their contributions come from IR to UV & involve the full mode functions

* Instead integrate out passives in constant active background

e Gives a scalar (effective) potential model
* Treat THAT stochastically



Two Examples of Integrating Out Passives

* Fermions Yukawa-coupled to a real scalar (gr-qc/0602110)

* L= ﬁegya(ia,u o %Aubc]bc)qjv —Y9 — %auqbavqbguv\/ —Y9 — [V(¢) + fgbLT"P]V—g
* Constant ¢ gives a fermion mass of m = f¢

* 0=0,[y=g9"0,0] — V'(¢) — filiSil (6 OIW=F = Ou[v=99" 0u] = Ve (d)v=7
UV divergences are absorbed in V'(¢)

* Photons minimally coupled to a complex scalar (arXiv:0707.0847)

* L= _i qu;oagupgva\/Tg B (au B ieAu)¢*(av + ieAv)gbgHV\/Tg B V(qb*qb)\/jg
e Constant ¢ gives a photon mass of m? = 2e?¢*¢ (work in Lorenz gauge)
0 = 0,[v=g9"0,¢| — ¢{V'(¢*$) + e?g"i[, A ] (; ) }N=9
~ 0,[V=99" 0, 9] — Vers (9" d)V=9



Complications from Differentiated Actives

* Order 1 contributions come from both UV & IR
. . HD r'(D)

* Exact dim. reg. gives (augb(x)a\,qb(x)) = —guv X )2 r(§+1)

* Any purely IR stochastic result must be positive for u = v
* Renormalization matters

D-4 D—4
* Primitive ((ZH) ) — Counterterm ((“a) ) = —In (”—a) + 0D —4)
D 2H

* No stochastic formalism will recover these logs, but RG was designed to do it

* Crucial to stay focused on large logarithms
* Avoid mysticism about open systems &/or course-graining
* Always check formalism against explicit computations

* Three examples
1. Nonlinear Sigma Models (no indices or gauge issue)
2. Scalar loop corrections to gravity (no gauge issue)
3. Quantum gravity (larger effects, but more complicated)



Nonlinear Sigma Models on de Sitter (arXiv:2110.08715)

 Single Field Model (unit S-matrix but interesting background & kinematics)

. [ = —1(1+Ac1>)za Do, D gHV /=
55_ . , D0, Pg*V =g

== (1+20)9,[(1+20) y=gga,o| =0

* Integrate out differentiated fields in constant background from interaction

c D) = Dy D (QDE)D(x)|Q) = —2EXD
(1+3%0)
/ _ A A AHY =
@7 = (1 +200) 3, [y, fafoia)] -+ 2T

4
off(P) = ziln ‘1 + = CI)‘ a scalar potential model! =» use Starobinsky

c (1+30)a|(1+5 cb),/—ggwavcbl —V/(®)y=g > 3H(@ — @) = —
* VEV shows "classical” roll-down accelerated by stochastic jitter

. (QID]Q) = {[1—”2 ln(a)r/4 } S 1n(a)? + 0(2°)

Verr(9)
(1+30)




Curvature-Dependent Renormalizations

1
+ L =—20,A0,Ag"" =g — 3 (1+3 A) 9,B8,Bg" =g

1
® AL — _ECB]‘ B B\/_g — ECBzRauBaVBgMV\/_g
* The Cgq term intrinsically HD, but the Cg, termis 6Z5 = Cy,R

. C B 7\2,LLD_4 F(D—l) T[COt(%) _}\ZMD_‘} F(g_l) (D—Z)
B2 = 4 (am)D/> F(D) D(D-1)  32mP/2 2(D-3)(D-4)

_ 0 1n(1+523) A%H? 4 _ 5
> Inca®) 327T2+0(;\) and B = 0(Q>)

e Cal an- Syman2|k Equation

D-1

*VB =

+ ,8 Pl ZyB] Pg(t,r) =0 and Pg(t,r) - ﬂln(Hr) + 0(A?)

cu->r = Pg(t,r) - —ln(H ){1 —}\ZHZ ~In(Hr) + 0(7\4)}




Large Logarithms in Nonlinear Sigma Models
Stochastic and Renormalization Group

Single Field Model

Double Field Model

. , , Quantity Leading Logarithms
(Juantity Leading Logarithms Quantin — t
us(n, k) {1—% In(a) + O(/\4)} X 7{%
ug (1, k) {l-i-—ln a)+0(XY } :1 up(n, k) {1 “—”O(’\J‘)} X 7o
— Pa(n, 1) {1 \2’;’ In(a) + O()\J‘)} X %ln(Hr')
Poln,r) || {12t ln(e) + OO b x B n(Hr) | Por) i £ OO} x EL (1)
. (Q|A(2)|Q) {1 2H 1 (a) + O(A } x A2 In(q)
’:.!:1|¢]i=‘”|5“'!} {]."' |['||I' | 'l_ {J[/IHL ]} 3{ _"I]l ) <Q|~‘l )|Q> {1_ \ H 111((! +O )\4 } w H_ H hll”]
016220 | 0\ 1 1) (QB(z)|2)
(YD) Ve { ol )} Y Q1B (2)(9) e {1 + O\ }x H2 1n(a)




MMCS Corrections to Gravity (arXiv:2405.00116)

o« —i[MFVEPI](x;x") @ W@WW

* Effective field equation for linearized gravity (k* = 167G)
« LWPOxch,,(x) — [ d*x" [PVEPI](x; x)Kh,s (x") = 8TGTH (x)

e Gravitational radiation
* Coioj(t, X) = Cmo] (t, x) { ~ X In[a(t)] + 0(1{‘*)}

* Response to THY = —§; 87 Ma63(x)
e ds? = —[1-2¥(t,r)]dt* + a?()[1 — 2®(¢t,7)]dx - dX

3K H2

GM 2 3k?H?
e Y(t,r) = — 1+ 320n]<2a2r2 — 1];%2 X InlaHr] + 0(1{4)}
GM 2 3k?H?
e O(t,r) = — -1+ 960:2a2r2 1‘; ~(In[aHT] + 1) + 0(1{4)}



Integrating out differentiated scalars (arXiv:2405.01024)

* Constant scalar same as constant hy,,, =» constant §,, = n,, + kh,,
* But g,, = a®§y,, with constant g, is de Sitter with H* - —gG°°H?!
F;fv = aH (555\9 + 5\652 B gOng\s > Rguv - _gOOHZ (S;f.gav o 5\[/).90#)
: : 3H*
* Integrate out d¢d¢ with 9,0,iA(x; x’)xr=x3= — ><2 Iuv
* B8 Ty = 0,900,0 — 30,0977 0,005 — ——|-G%°H?| gu
* NB a negative contribution to the cosmological constant & arbitrarily large
* Induced stress tensor only conserved at leading log order =2 extend
e AL=ZE IE(R)\Q__‘Q gives fully conserved T,
2°-3-T

* Agrees with induced T, for constant g,
 Effective field equations do not explain any of the leading logs

* Induced T}, for QG more complicated
e But can reconstruct using solutions for potentials (if not RG effects)




Curvature-Dependent Field Strength Renormalization

* 1-Loop C-terms: AL = ¢;R*\/—g + CZC“ﬁV‘SCaﬁy(S\/—g

2 o C_w(d) :
287D/2  (D-1)2(D-3)(D—-4) 27 28gD/2 (D+1)(D-1)(D-3)2(D—4)
 R? induces curvature-dependent renormalizations of G & A = (D — 1)H?
R? = [R — DA)? + 2DA[R — (D — 2)A] + D(D — 4)A?
e C? does also from 9 (which surprised me!)

0C1=

* Callan-Symanzik Equation explains all three leading logs

e Can tell from the exact calculation that all three logs come from
renormalization

* Likely not true for pure QG, but exact calculation will tell



Conclusions

Starobinsky’s formalism proven to work for scalar potential models
* Reproduces the leading logarithms at each order
 Stochastic “jitter” is IR-truncated free field of Yang-Feldman equation

Inflationary QFT produces (at least) three kinds of large logarithms
1 H? 2 A D
am2aarAx?  8m2 ln(H Ax )
* Three kinds of induced stochastic potential models from integrating out fields
HP~*  (ua)P~*

* “RG” logs from renormalization =» = —In (ﬂ) +O0(D —4)
D—4 D—4 2H

* “Tail term” logs (original stochastic formalism) =2 iA(x;x’') =

Resummation schemes exist for
 Scalar potential models = all stochastic
* Scalars coupled to other fields (SQED, Yukawa) = induced stochastic potential models
* Nonlinear sigma models = both induced stochastic potential models & RG
* Graviton corrections to matter (EM, MMCS, Dirac) =2 all RG
* Scalar corrections to gravity = all RG

Next step: quantum gravity (expect both stochastic & RG)
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