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-  overdensity (Carr ‘75) 

- Isocurvature (Dolgov & Silk ‘93) 

- Quark Confinement (Dvali+ ’21) 

- Collapse of topological defect (Hawking ‘89) 

- Bubble collision (Hawking+ ‘82) 

- Particle trapping in bubble (Baker+ ‘21) 

- Asynchronous 1st PT (Liu+ ’21, Lewicki+ ’24) 

- Scalar 5th force (Flores & Kusenko ’20)

∼ 𝒪(1)

…

before Star Formation 

P!mor"al Black Hole

- Dark Matter (Chapline ‘75) 
- LVK merger GW? (Sasaki+ ’16) 

- SMBH seeds? (Düchting ‘04) 

- OGLE lensing obj.? (Niikura+ ‘19) 

- Planet 9? (Scholtz & Unwin ‘19) 

- Trigger of r-process? (Fuller+ ‘17) 

- Baryogenesis? (Baumann+ ‘07) 

- JWST luminous gals? (Hutsi+ ‘22)

…

Carr & Hawking ’74

Primordial BH
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… …

Carr & Hawking ’74

Primordial BH

- Dark Matter (Chapline ‘75) 
- LVK merger GW? (Sasaki+ ’16) 

- SMBH seeds? (Düchting ‘04) 

- OGLE lensing obj.? (Niikura+ ‘19) 

- Planet 9? (Scholtz & Unwin ‘19) 

- Trigger of r-process? (Fuller+ ‘17) 

- Baryogenesis? (Baumann+ ‘07) 

- JWST luminous gals? (Hutsi+ ‘22)before Star Formation 

P!mor"al Black Hole

-  overdensity (Carr ‘75) 

- Isocurvature (Dolgov & Silk ‘93) 

- Quark Confinement (Dvali+ ’21) 

- Collapse of topological defect (Hawking ‘89) 

- Bubble collision (Hawking+ ‘82) 

- Particle trapping in bubble (Baker+ ‘21) 

- Asynchronous 1st PT (Liu+ ’21, Lewicki+ ’24) 

- Scalar 5th force (Flores & Kusenko ’20)

∼ 𝒪(1) 338 in 2024
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Stellar Mass Function in Ultra-Faint Dwarfs…? 
Esser, Rijcke, Tinyakov ‘23

Rep. Prog. Phys. 84 (2021) 116902 Review

Figure 10. Constraints on f (M) from evaporation (red), lensing (magenta), dynamical effects (green), gravitational waves (black), accretion
(light blue), CMB distortions (orange), large-scale structure (dark blue) and background effects (grey). Evaporation limits come from the
extragalactic γ-ray background (EGB), CMB anisotropies (CMB), the Galactic γ-ray background (GGB) and Voyager-1 e± limits (V).
Lensing effects come from microlensing of stars in M31 by Subaru (HSC), in the Magellanic Clouds by MACHO (M) and EROS (E), in the
local neighbourhood by Kepler (K), in the Galactic bulge by OGLE (O) and the Icarus event in a cluster of galaxies (I), microlensing of
supernovae (SN) and quasars (Q), and millilensing of compact radio sources (RS). Dynamical limits come from disruption of wide binaries
(WB) and globular clusters (GC), heating of stars in the Galactic disc (DH), survival of star clusters in Eridanus II (Eri) and Segue 1 (S1),
infalling of halo objects due to dynamical friction (DF), tidal disruption of galaxies (G), and the CMB dipole (CMB). Accretion limits come
from x-ray binaries (XB), CMB anisotropies measured by Planck (PA) and gravitational waves from binary coalescences (GW). Large-scale
structure constraints come from the Lyman-α forest (Lyα) and various other cosmic structures (LSS). Background constraints come from
CMB spectral distortion (µ), 2nd order gravitational waves (GW2) and the neutron-to-proton ratio (n/p). The incredulity limit (IL)
corresponds to one hole per Hubble volume. These constraints are broken down into different categories in subsequent !gures, these
including some less certain limits which are omitted here.

derived from the constraint on β(M) derived in section 2.3.1
by using equation (57). For M > 2M∗, one can neglect the
change of mass and the time-integrated spectrum dNγ/dE
of photons from each PBH is just obtained by multiplying
the instantaneous spectrum by the age of the Universe t0.
For PBHs of mass M, the discussion in the appendix of
[135] gives

dNγ

dE
∝

{
E3M3 (E < M−1)

E2M2 e−EM (E > M−1),
(58)

where we put h̄ = c = 8πG = 1. This peaks at E ∼ M−1 with
a value independent ofM. The number of background photons
per unit energy per unit volume from all PBHs is then obtained
by integrating over the mass function:

E(E) =
∫ Mmax

Mmin

dM
dn
dM

dNγ

dE
(M,E), (59)

whereMmin andMmax specify the mass limits. For a monochro-
matic mass function, this gives

E(E) ∝ f (M)×
{
E3M2 (E < M−1)

E2M e−EM (E > M−1)
(60)

and the associated intensity is

I(E) ≡ EE(E)
4π

∝ f (M)×
{
E4M2 (E < M−1)

E3M e−EM (E > M−1)
(61)

with units s−1 sr−1 cm−2. This peaks at E ∼ M−1 with
a value Imax(M) ∝ f (M)M−2. The observed extragalactic
intensity is Iobs ∝ E−(1+ε) ∝ M1+ε where ε lies between
0.1 (the value favoured in [196]) and 0.4 (the value
favoured in [283]). Hence requiring Imax(M) ! Iobs(M)
gives [135]

f (M) " 2× 10−8
(
M
M∗

)3+ε

(M > M∗). (62)

As expected, this is equivalent to condition (33), which is rep-
resented in !gure 7. We have seen that the Galactic γ-ray

21

Last Possibility?

Corresponding induced GWs 
of mHz ↔ LISA (2037–) !!

Prove or Falsify PBH-DM?

Obs. Consts.
Carr, Kohri, Sendoda, Yokoyama ‘20

All DM = PBH
PB

H 
/ 
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l D

M

PBH mass
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Non-PTB??

PBH abundance

Num. Rel.

induced GW b.g.

PTB □ ĥ = ̂Sζ

indirect evidence

Atal+ ’19 
Escrivà, YT, Yokoyama, Yoo ‘22

𝒞(r) = 2
3 [1 − (1 + rζ′ (r))2]

𝒞̄ = 1
VRm

∫
Rm

0
4πR2𝒞dR > 𝒞̄th = 2

5

M ∼ MRm
(𝒞̄ − 𝒞̄th)0.36

Universal Criterion

Mass Formula  Choptuik+ ‘93 Abe, Inui, YT, Yokoyama ‘22
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x R δR(x) = ∫ d3y WR(x − y)δ(y) ≳ 1
3 ( = p

ρ )
PBH!!

Abundance :  

Mass　        : 

ρPBH
ρtot

= ∫
∞

1/3

1

2πσ2
R

e−δ2
R/2σ2

R

MPBH ∼ MH R=H−1
= 4π

3 ρR3

R=H−1

Carr’s simplest way
Press—Schechter

δ ∼ − 4
9

Δ
(aH)2 ζ, σ2

R = ( 4
9 )

2

∫ d ln k (kR)2𝒫ζ(k)W2(kR)
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Compaction & Peak th.
Yoo, Harada, Garriga, Kohri ‘18

= 2
3 [1 − (1 + rζ′ )2]

= 1
V(R) ∫

R

0
δ × 4πR2dR

R=H−1

𝒞 = 2G
MMS − Mb.g.

R

δ = − 8
9

1
a2H2 e−5ζ/2Δeζ/2

Φ
R = aeζr

MMS

Mb.g.

if  is Gaussian (Bardeen, Bond, Kaiser, Szalay ’86)ζ

ζ(r) = ζ(r; μ, k∙ ∣ 𝒫ζ)

μ

k−1
∙

comb. Gaussian

Compaction Function   Shibata & Sasaki ‘99
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Compaction & Peak th.
Yoo, Harada, Garriga, Kohri ‘18

ζ(r) = ζ(r; μ, k∙ ∣ 𝒫ζ)

μ

k−1
∙

comb. Gaussian

Compaction Function   Shibata & Sasaki ‘99

𝒞 = 2
3 [1 − (1 + rζ′ )2]

𝒞̄ = 1
V(R) ∫

R

0
𝒞 × 4πR2 > 𝒞̄th ≃ 2

5

Universal Criterion   Atal, Cid, Escriva, Garriga, ‘19

Mass   Musco, Miller, Polnarev ’08

Primordial black hole formation in the radiative era 10

Figure 1. Scaling behaviour for MBH as function of (δ − δc)γ calculated for a
radiative perfect fluid. For MBH ! MH , the points are well-fitted by a scaling
law with γ = 0.357 and K = 4.02.

but terminated at low masses with the curve flattening out at a minimum value of

MBH/MH . However, we want to stress that great care needs to be taken in making a

comparison.
Firstly, in order to compare our results in figure 1 quantitatively with those in figures

7 & 8 of [10], we need to relate the two different mass normalizations used. The value

of MH appearing in (28) depends on the moment when it is measured. In common with

much of the literature, we have evaluated it at the time of horizon crossing, whereas in

[10] the perturbation was started already well inside the horizon and MH was evaluated

at that initial time. Making a direct comparison is then difficult. Also, the profiles
used for the perturbations were quite different. To get some idea, one can compare the

upper part of the plots, where one sees a deviation away from the scaling law at large

masses. In [10], this deviation occurs at MBH ∼ 0.1MH while we observe it occurring

at MBH ∼ MH . This indicates that the results in [10] probably need to be rescaled

upwards in mass by about one order of magnitude in order to make the comparison

(this has been confirmed in discussion with one of the previous authors), putting their
plateau at ∼ 10−2.5 in our units, with a divergence from the scaling behaviour at the

low-mass end beginning at (δ−δc) ∼ 10−8 using our measure of perturbation amplitude.

Their explanation for the minimum mass seen in their calculations was related to the

occurrence of strong shocks in the lower-mass cases. With our initial conditions, we do

not see these shocks (hence the continuation of the scaling law) but if we impose more

general non-linear initial conditions within the cosmological horizon scale, then we do

often see shocks which are consistent with those reported in [10] (although our code is

not equipped to handle the strong shock conditions which they saw and so we can see

MPBH ≃ (μ − μth(k∙, ⋯))0.36 MH
R=H−1

δ = − 8
9

1
a2H2 e−5ζ/2Δeζ/2

if  is Gaussian (Bardeen, Bond, Kaiser, Szalay ’86)ζ

cf. non-sphericity, Escrivà & Yoo ‘24
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ϕ

V(ϕ)

4 5 6 7 8
10-9
10-7
10-5
0.001

0.100

10

N

P(
N
)

∼ 𝒫ζ,ptb

∝ e−Λζ

extremely large 𝒩

𝒩

P(
𝒩

)

∝ e−ζ2/2σ2

PBH?

Exp-tail
Pattison+ ’17, ’21, Ezquiaga+ ’20, Figueroa+’20

ζ(x) = δ𝒩(x) = − 1
Λ ln (1 − Λg(x)) ( = g(x) + Λ

2 g2(x) + ⋯)
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Lattice of Inflation

Standard Lattice Simulation
Caravano, Komatsu, Lozanov, Weller ’21 
Caravano, Komatsu, Lozanov, Weller ’22 
Caravano, Inomata, Renaux-Petel ’24 
Caravano, Franciolini, Renaux-Petel ‘24

Original: 
EM in axion: 

Butterfly effect: 
USR:

Non-PTB on sub-Hubble 
ElectroMagnetic field

No metric-ptb. 
Not directly ζ

STOchastic LAttice Simulation
Mizuguchi, Murata, YT ‘24

= EFT of superH fields
= Local FLRW + Correlated Brownian motion

Starobinsky ’86, +Yokoyama ‘94

Non-PTB on superH 
Directly  via ζ δ𝒩

PTB on subH
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Δϕ(N, x) = π(N, x)
H(N, x) ΔN + 𝒫ϕ(N, x)ΔW(N, x),

Δπ(N, x) = (−3π(N, x) − V′ (ϕ(N, x))
H(N, x) ) ΔN,

3M2
PlH2(N, x) = 1

2 π2(N, x) + V(ϕ(N, x)),

⟨ΔW(N, x)ΔW(N′ , y)⟩ = sin kσ(N) |x − y |
kσ(N) |x − y |

δNN′ 
ΔN

EoM & Noise

≈ H(N, x)
2π

Mizuguchi, Murata, YT ‘24

⟨ΔWkΔW*k′ 

⟩ ∝ δkk′ 
δ(k − kσ)

ΔW(x)
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STOLAS
Mizuguchi, Murata, YT ‘24

Ex. 1: Chaotic V = 1
2 m2ϕ2
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 ζ

-0.5 0.0 0.5
10-6
10-5
10-4
0.001
0.010
0.100

1

ζ

P(
ζ)

lin. PTB

STOLAS

Gaussian
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STOLAS
Mizuguchi, Murata, YT ‘24

Ex. 2: Starobinsky’s linear 
Starobinsky  ‘92

ϕ

V

-0.4 -0.2 0.0 0.2 0.4
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0.001
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1
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ζ)

1 5 10

5.× 10-4

0.001

0.002

0.005

n


ζ

lin. PTB

STOLAS

Gaussian

log-normal

sharp end of USR needed for exp.-tail
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Ex. 1 : Chaotic Ex. 2 : Starobinsky’s linear
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Importance Sampling

Intentionally large noise ∝ sinc (kσ(NPBH)r)
Ex. 2 : Starobinsky’s linear

ζ(r) → 𝒞(r) → 𝒞̄m = 0.56 > 𝒞̄th = 2
5

see, e.g., Jackson+ ‘22

Probability is re-weighted 
according to the probability of large noise!!
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𝒞̄m = 0.387

𝒞̄m = 0.310

𝒞̄m = 0.372

𝒞̄m = 0.383𝒞̄m = 0.268

𝒞̄m = 0.442
M = 1.58 × 1020 g

𝒞̄m = 0.416
M = 1.21 × 1020 g

𝒞̄m = 0.409
M = 0.846 × 1020 g
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Importance Sampling
Mizuguchi, Murata, YT ‘24

0.05 0.10 0.50 1

1

1010

10-10

MPBH / 1020g

f PB
H

Peak th w/  
Gaussian & 𝒫ζ ∝ δ(ln k − ln k*)

Ex. 2: Starobinsky’s linear 
Starobinsky  ‘92

ϕ

V
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Summary

- STOLAS can directly sample the PBH abundance 

- High resolution in FUGAKU superC 

- EM? GW? … 

- Initial Condition for Late-U. cosmological simulation?


