Analytical Methods in Stochastic Inflation

Koki Tokeshi

Institute for Cosmic Ray Research (ICRR)

Based on:

- KT, Vennin (2023)

- Honda, Jinno, KT (2024)

Test Field and Exact Solutions

TALK PLAN

Inflaton Field and Constrained Formalism

Summary

Starobinsky (1984)

An effective description of large-scale fields in inflation

Starobinsky (1984)

An effective description of large-scale fields in inflation

Test Field and Exact Solutions

TALK PLAN

Inflaton Field and Constrained Formalism

Summary

A Test Field

$$
\frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi(N) \qquad H \approx \text{const.}
$$

Distribution of the field follows Fokker-Planck equation

$$
\frac{\partial f}{\partial N} = \left(\frac{1}{3H^2}\frac{\partial}{\partial \phi}\frac{\mathrm{d}V}{\mathrm{d}\phi} + \frac{H^2}{8\pi^2}\frac{\partial^2}{\partial \phi^2}\right) f
$$

Diffusive Dynamics

Exactly solvable

Not exactly solvable

Figure: Honda, Jinno, Pinol, and KT (2023)

Q: What kind of potential can be solved exactly?

A Test Field

$$
\frac{\mathrm{d}\phi}{\mathrm{d}N} = -\frac{V'}{3H^2} + \frac{H}{2\pi}\xi(N) \qquad H \approx \text{const.}
$$

Distribution of the field follows Fokker-Planck equation

$$
\frac{\partial f}{\partial N} = \left(\frac{1}{3H^2} \frac{\partial}{\partial \phi} \frac{dV}{d\phi} + \frac{H^2}{8\pi^2} \frac{\partial^2}{\partial \phi^2}\right) f
$$

$$
\left[-\frac{H^2}{8\pi^2} \frac{d^2}{d\phi^2} + V_S(\phi)\right] \Psi_n(\phi) = E_n \Psi_n(\phi)
$$

Our problem is reduced to exact solutions in QM.

Exactly Solvable QM

Only 10 potentials can be solved exactly in QM.

Infeld and Hull (1954), Honda, Jinno, and KT (2024)

Wavefunctions are expressed in terms of classical orthogonal polynomials. ("Exactly solvable" = all energy levels and wavefunctions are endowed with closed-form)

Example: Radial H.O.

Honda, Jinno, and KT (2024)

10/20

stochastic inflation corresponding QM

$$
f(\phi, N) = 2\left(\sqrt{\frac{\omega}{2}}\sqrt{\frac{8\pi^2}{H^2}}\right) z^{\ell+1} e^{-z} \frac{\left[zz_0 e^{-2\omega(N-N_0)}\right]^{-(2\ell+1)/4}}{1 - e^{-2\omega(N-N_0)}}
$$

$$
\times \exp\left[-(z+z_0)\frac{e^{-2\omega(N-N_0)}}{1 - e^{-2\omega(N-N_0)}}\right] I_{\ell+1/2}\left(\frac{\sqrt{zz_0}}{\sinh\left[\omega(N-N_0)\right]}\right)
$$

Test Field and Exact Solutions

TALK PLAN

Inflaton Field and Constrained Formalism

Summary

Inflaton's Random Walk

$$
\frac{\mathrm{d}\phi}{\mathrm{d}N}=-\frac{V'}{3H^2(\phi)}+\frac{H(\phi)}{2\pi}\xi(N)
$$

Every realisation records different amount of e-folds.

Inflaton's Random Walk

However, analysing tails is computationally very hard. (Do we generate a bunch of realisations and keep the long-lasted ones only?)

"Constrained" RW

Mazumdar & Orland (2015), KT & Vennin (2023)

The solution to the standard FP equation describes ...

$$
P(\phi, N) = P(\phi, N \mid \phi_0, N_0) \qquad \left(\begin{array}{c} \partial P \\ \overline{\partial N} \end{array} = \left[-\frac{\partial}{\partial \phi} F(\phi) + \frac{1}{2} \frac{\partial^2}{\partial \phi^2} G^2(\phi) \right] \! P \right)
$$

prob. to find inflaton at time N amongst all realisations.

Let's introduce the *conditioned* distribution:

$$
\mathcal{P}(\phi, N \mid N_{\text{F}}) = \frac{P_{\text{FPT}}(\phi, N = N_{\text{F}} - N) \times P(\phi, N)}{P_{\text{FPT}}(\phi_0, N = N_{\text{F}})}
$$
\n
$$
(\phi_0, N_0) \qquad (\phi, N) \qquad (\phi_F, N_F)
$$

"Constrained" RW

$$
\frac{\partial \mathcal{P}}{\partial N} = \left[-\frac{\partial}{\partial \phi} \left[\tilde{F}(\phi, N) \right] + \frac{1}{2} \frac{\partial^2}{\partial \phi^2} G^2(\phi) \right] \mathcal{P}
$$

ensures to finish exactly at $N = N_F$

To be concrete, let us consider double-quadratic model.

$$
V(\bm{\phi})=\frac{m_1^2}{2}\phi_1^2+\frac{m_2^2}{2}\phi_2^2
$$

$$
\sqrt{r}=\frac{m_2}{m_1}
$$

Classical trajectory:

$$
\frac{\mathrm{d}x}{\mathrm{d}N} = -\frac{2x}{x^2 + ry^2}
$$

$$
\frac{\mathrm{d}y}{\mathrm{d}N} = -\frac{2ry}{x^2 + ry^2}
$$

$$
y = c x^r
$$

Now, let's distinguish single/double-field at obs. scale.

- 1. Choose an initial location in field-space randomly.
- 2. Integrate the (classical) EoM until inflation ends.
- 3. Look at the field ratio at 60 e-folds before the end.

So, what does happen in the longest-inflated region?

• initial location

Extra number of e-folds increases $#$ of initial conditions that give rise to single-field behaviour at obs. scales.

Summary

◆ Stochastic inflation gives a non-perturbative way to describe the large-scale field dynamics.

◆ For a test field during cosmic inflation, a class of all the possible exact solutions were presented.

◆ The "constrained stochastic inflation" formalism was constructed, to see the single-field selection effect.