Extending Starobinsky's formalism to general relativity

S. P. Miao (National Cheng Kung University, Taiwan)

From Inflation to Structure Formation (Nov 6-8, 2024), November 7, 2024

Based on arXiv: 2405.01024, 2409.12003

with Nick Tsamis & R. P. Woodard

Starobinsky's Formalism -> The Proof (gr-qc/0505115)

• Exact field equation for scalar potential model on de Sitter

•
$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}\Phi\partial_{\nu}\Phi g^{\mu\nu}\sqrt{-g} - V(\Phi)\sqrt{-g} \rightarrow \partial_{\mu}\left[\sqrt{-g} g^{\mu\nu}\partial_{\nu}\Phi\right] = V'(\Phi)\sqrt{-g}$$

- Yang-Feldman equation
 - $\Phi(t,\vec{x}) = \Phi_0(t,\vec{x}) \int d^4x' \sqrt{-g(t',\vec{x}')} i\theta(t-t') [\Phi_0(t,\vec{x}),\Phi_0(t',\vec{x}')] V'(\Phi(t,\vec{x}))$
 - $\Phi_0(t, \vec{x}) = \int \frac{d^3k}{(2\pi)^3} \Big\{ u(t, k) e^{i\vec{k}\cdot\vec{x}} \alpha(\vec{k}) + u^*(t, k) e^{-i\vec{k}\cdot\vec{x}} \alpha^{\dagger}(\vec{k}) \Big\}$
 - $u(t,k) = \frac{H}{\sqrt{2k^3}} \left[1 \frac{ik}{Ha} \right] \exp\left[\frac{ik}{Ha} \right] = \frac{H}{\sqrt{2k^3}} \left[1 + \frac{1}{2} \left(\frac{k}{Ha} \right)^2 + \frac{i}{3} \left(\frac{k}{Ha} \right)^3 + \cdots \right]$

Starobinsky's Formalism The Proof (gr-qc/0505115)

- IR truncation changes everything but preserves leading logarithms
 - Every pair of Φ_0 's must contribute an IR log for leading logarithm order \rightarrow can IR truncate Φ_0 to φ_0

•
$$\varphi_0(t, \vec{x}) \equiv \int \frac{d^3k}{(2\pi)^3} \theta(k - H) \theta(Ha - k) \left\{ \frac{H}{\sqrt{2k^3}} e^{i\vec{k}\cdot\vec{x}} \alpha(\vec{k}) + \frac{H}{\sqrt{2k^3}} e^{-i\vec{k}\cdot\vec{x}} \alpha^{\dagger}(\vec{k}) \right\}$$

(1st imaginary for commutator)

- $\varphi(t,\vec{x}) = \varphi_0(t,\vec{x}) \int d^4x' \; \frac{\theta(t-t')}{3H} \; \delta^3(\vec{x} \vec{x}') \; V'(\varphi(t',\vec{x}')) = \varphi_0(t,\vec{x}) \frac{1}{3H} \int_0^t dt' \; V'(\varphi(t',\vec{x})) \; dt' \; V'(\varphi(t'$
 - $\varphi_0(t,\vec{x}) \neq \Phi_0(t,\vec{x})$ no UV divergences, $\varphi_0 \& \dot{\varphi}_0$ commute, but their correlators agree at leading log order
- Taking the time derivative gives Starobinsky's Langevin equation!

•
$$\dot{\varphi} = \dot{\varphi}_0 - \frac{1}{3H}V'(\varphi) \implies 3H(\dot{\varphi} - \dot{\varphi}_0) = -V'(\varphi)$$

- Importance of every pair of free fields contributing an IR log to reach leading log order
 - This fails for fields other than MMC scalars and undifferentiated gravitons
 - Doesn't work for photons, fermions, MCC scalars
 - Even fails when some MMC scalars and gravitons are differentiated (cf. $\sqrt{16\pi G} \times h\partial h\partial h$)

Explicit Computations Show Discrepancies beyond Scalar Potential Models

- Order 1 contributions come from both UV & IR
 - Exact dim. reg. gives $\langle \partial_{\mu} \phi(x) \partial_{\nu} \phi(x) \rangle = -g_{\mu\nu} \times \frac{H^{D}}{2(4\pi)^{D/2}} \frac{\Gamma(D)}{\Gamma(\frac{D}{2}+1)}$
 - Any purely IR stochastic result must be positive for $\mu = \nu$
- Simple rule for ``GR + Fermions' deviates from Starobinsky's (gr-qc/0802.2377)
- Renormalization matters
 - Primitive $\left(\frac{(2H)^{D-4}}{D-4}\right)$ Counterterm $\left(\frac{(\mu a)^{D-4}}{D-4}\right) = -\ln\left(\frac{\mu a}{2H}\right) + O(D-4)$
 - No stochastic formalism will recover these logs, but RG was designed to do it
- Crucial to stay focused on large logarithms
 - Always check formalism against explicit computations

Distinguish between "Active" & "Passive" Fields

- Undifferentiated Actives can cause IR logs, Passives cannot
 - MMC scalars & gravitons $[h_{\mu\nu}$ in $g_{\mu\nu} \equiv a^2(\eta_{\mu\nu} + \kappa h_{\mu\nu})$] are Active
 - MCC scalars, fermions & photons are Passive
- Integrate out Passives & differentiated Actives for constant Active
 - Induces scalar potential model for Actives
 use Starobinsky formalism
- Constant Actives induce effective potentials three ways (at least):
 - Through masses, Yukawa: $-f\phi \overline{\Psi}\Psi\sqrt{-g}$
 - Through field strengths, Nonlinear Sigma: $-f(A)^2 \partial_\mu B \partial_\nu B g^{\mu\nu} \sqrt{-g}$
 - Through the Hubble constant, gravity: constant $h_{\mu\nu}$ corresponds to de Sitter different H \rightarrow just change this parameter in the propagators

Distinguish between "Active" & "Passive" Fields

- Undifferentiated Actives can cause IR logs, Passives cannot
 - MMC scalars & gravitons $[h_{\mu\nu}$ in $g_{\mu\nu}\equiv a^2(\eta_{\mu\nu}+\kappa h_{\mu\nu})$] are Active
 - MCC scalars, fermions & photons are Passive
- Integrate out Passives & differentiated Actives for constant Active
 - Induces scalar potential model for Actives
 use Starobinsky formalism
- Constant Actives induce effective potentials three ways (at least):
 - Through masses, Yukawa: $-f\phi\overline{\Psi}\Psi\sqrt{-g}$
 - Through field strengths, Nonlinear Sigma: $-f(A)^2 \partial_\mu B \partial_\nu B g^{\mu\nu} \sqrt{-g}$
 - Through the Hubble constant, gravity: constant $h_{\mu\nu}$ corresponds to de Sitter different H \rightarrow just change this parameter in the propagators

Double Field Model/ Single Field Model VS. Matter loops to GR/ pure GR

- Same derivative interactions as gravity
 - And same sorts of large logarithms but no indices and no gauge fixing issues
- Double Field Model

•
$$\mathcal{L} = -\frac{1}{2}\partial_{\mu}A\partial_{\nu}Ag^{\mu\nu}\sqrt{-g} - \frac{1}{2}\left(1 + \frac{\lambda}{2}A\right)^{2}\partial_{\mu}B\partial_{\nu}Bg^{\mu\nu}\sqrt{-g}$$

MMCS Corrections to Gravity (arXiv:2405.00116)

•
$$-i[^{\mu\nu}\Sigma^{\rho\sigma}](x;x')$$

- Single Field Model
 - $\mathcal{L} = -\frac{1}{2}(1 + \frac{1}{2}\lambda\Phi)^2\partial_\mu\Phi\partial_\nu\Phi g^{\mu\nu}\sqrt{-g}$ \rightarrow $\Phi[\Psi] = \frac{2}{\lambda}\left[\sqrt{1 + \lambda\Psi} 1\right]$ for Ψ free
 - Unit S-matrix but interactions affect background and particle kinematics
- Pure Gravity (no dimensionally regulated & fully renormalized result yet)

Explicit computation: MMCS Loops to GR

- Effective field equation for linearized gravity ($\kappa^2 = 16\pi G$)
 - $\mathcal{L}^{\mu\nu\rho\sigma} \kappa h_{\rho\sigma}(x) \int d^4x' \left[^{\mu\nu} \Sigma^{\rho\sigma}\right](x; x') \kappa h_{\rho\sigma}(x') = 8\pi G T^{\mu\nu}(x)$
 - Used Schwinger-Keldysh formalism for real & causal field equations
- Gravitational radiation

•
$$C_{0i0j}(t, \vec{x}) = C_{0i0j}^{(0)}(t, \vec{x}) \left\{ 1 - \frac{3\kappa^2 H^2}{160\pi^2} \times \ln[a(t)] + O(\kappa^4) \right\}$$

- Response to $T^{\mu\nu} = -\delta_0^{\mu} \delta_0^{\nu} M a \delta^3(\vec{x})$
 - $ds^2 = -[1 2\Psi(t,r)]dt^2 + a^2(t)[1 2\Phi(t,r)]d\vec{x} \cdot d\vec{x}$

•
$$\Psi(t,r) = \frac{GM}{ar} \left\{ 1 + \frac{\kappa^2}{320\pi^2 a^2 r^2} - \frac{3\kappa^2 H^2}{160\pi^2} \times \ln[aHr] + O(\kappa^4) \right\}$$

•
$$\Phi(t,r) = -\frac{GM}{ar} \left\{ 1 - \frac{\kappa^2}{960\pi^2 a^2 r^2} - \frac{3\kappa^2 H^2}{160\pi^2} (\ln[aHr] + 1) + O(\kappa^4) \right\}$$

- NB the negative sign
 - Inflationary creation of scalars sucks energy from gravity

What We Did (approximation technique)in arXiv:2405.01024

- Integrated Scalars out of Einstein Equation at leading logarithm order
 - $R_{\mu\nu} \frac{1}{2}g_{\mu\nu}R + \frac{1}{2}g_{\mu\nu}\Lambda = 8\pi G \left\{ \partial_{\mu}\phi\partial_{\nu}\phi \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\partial_{\rho}\phi\partial_{\sigma}\phi \right\}$
 - Extended to a fully conserved form
- Explained 1-loop leading log results using variant of Renormlization Group
- Re-summed leading logarithm results to all orders

•
$$C_{0i0j}(t, \vec{x}) \to C_{0i0j}^{(0)}(t, \vec{x}) \times [a(t)]^{-\frac{3GH^2}{10\pi}}$$

•
$$\Psi(t,r) \to \frac{GM}{a(t)r} \times [a(t)Hr]^{-\frac{3GH^2}{10\pi}}$$

•
$$\Phi(t,r) \rightarrow -\frac{GM}{a(t)r} \times [a(t)Hr]^{-\frac{3GH^2}{10\pi}}$$

$$G_N(x_1,\ldots,x_N;\lambda;\mu) = G_N(x_1,\ldots,x_N;\lambda;\mu_0) \times \left[\frac{\mu_0}{\mu}\right]^{N\gamma(\lambda)}$$

Integrating out differentiated fields

- Logs come from undifferentiated $h_{\mu\nu}$ \rightarrow constant $\tilde{g}_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa h_{\mu\nu}$
 - But $g_{\mu\nu}=a^2\tilde{g}_{\mu\nu}$ with constant $\tilde{g}_{\mu\nu}$ is de Sitter with $H^2\to -\tilde{g}^{00}H^2$!

$$\Gamma^{\rho}_{\mu\nu} = aH \left(\delta^{\rho}_{\mu} \delta^{0}_{\nu} + \delta^{\rho}_{\nu} \delta^{0}_{\mu} - \tilde{g}^{0\rho} \tilde{g}_{\mu\nu} \right) \rightarrow R^{\rho}_{\sigma\mu\nu} = -\tilde{g}^{00} H^{2} \left(\delta^{\rho}_{\mu} g_{\sigma\nu} - \delta^{\rho}_{\nu} g_{\sigma\mu} \right)$$

- Integrate out $\partial \phi \partial \phi$ with $\partial_{\mu} \partial_{\nu}' i \Delta(x; x')_{x'=x} = -\frac{3H^4}{32\pi^2} \times g_{\mu\nu}$
 - E.g. $T_{\mu\nu} = \partial_{\mu}\varphi\partial_{\nu}\varphi \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\partial_{\rho}\varphi\partial_{\sigma}\varphi \rightarrow \frac{3}{32\pi^2}[-\tilde{g}^{00}H^2]^2g_{\mu\nu}$
 - NB a negative contribution to the cosmological constant & arbitrarily large
 - Explains the finite renormalization of Λ but none of the large logarithms
- Induced stress tensor only conserved at leading log order

 extend
 - $\Delta \mathcal{L} = \frac{R^2 \ln(R) \sqrt{-g}}{2^8 \cdot 3 \cdot \pi^2}$ gives fully conserved $T_{\mu\nu}$
 - Agrees with induced $T_{\mu\nu}$ for constant $\tilde{g}_{\mu\nu}$
- Induced $T_{\mu\nu}$ for QG more complicated
 - But can reconstruct using solutions (explicit computations) for potentials (if not RG effects)

Curvature-Dependent Field Strength Renormalization

• 1-Loop C-terms: $\Delta \mathcal{L} = c_1 R^2 \sqrt{-g} + c_2 C^{\alpha\beta\gamma\delta} C_{\alpha\beta\gamma\delta} \sqrt{-g}$

•
$$c_1 = \frac{\mu^{D-4}\Gamma(\frac{D}{2})}{2^8\pi^{D/2}} \frac{(D-2)}{(D-1)^2(D-3)(D-4)}$$
 $c_2 = \frac{\mu^{D-4}\Gamma(\frac{D}{2})}{2^8\pi^{D/2}} \frac{2}{(D+1)(D-1)(D-3)^2(D-4)}$

• R^2 induces a Λ -dependent renormalization of graviton field strength

$$R^{2} = [R - D\Lambda]^{2} + 2D\Lambda[R - (D - 2)\Lambda] + D(D - 4)\Lambda^{2}$$

• C^2 does also from ∂_0^2 (which surprised us!)

$$\delta Z = D[2(D-1)c_1 - c_2]\kappa^2 H^2 \qquad \Rightarrow \qquad \gamma \equiv \frac{\partial \ln(1+\delta Z)}{\partial \ln(\mu^2)} = \frac{\kappa^2 H^2}{320\pi^2} = \frac{3GH^2}{20\pi}$$

Callan-Symanzik Equation explains all three leading logs

$$\bullet \left[\frac{\partial}{\partial \ln(\mu)} + \beta_G \frac{\partial}{\partial G} + 2\gamma \right] G^{(2)}(x; x') = 0 \qquad \left(-\frac{3\kappa^2 H^2}{160\pi^2} \times \ln[a(t)] \right)$$

• $\beta_G = 0$ (at this order) and factors of $\ln(\mu)$ are really $\ln\left(\frac{\mu a}{2H}\right)$

$$G_N(x_1,\ldots,x_N;\lambda;\mu) = G_N(x_1,\ldots,x_N;\lambda;\mu_0) \times \left[\frac{\mu_0}{\mu}\right]^{N\gamma(\lambda)}$$

A variant of RG group

Callan-Symanzik Equation

•
$$\left[\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial \lambda} + 2\gamma_B\right] P_B(t,r) = 0$$
 and $P_B(t,r) \rightarrow \frac{KH}{4\pi} \ln(Hr) + O(\lambda^2)$
• $\mu \rightarrow \frac{1}{r}$ \rightarrow $P_B(t,r) \rightarrow \frac{KH}{4\pi} \ln(Hr) \left\{1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4)\right\}$

•
$$\mu \frac{\partial}{\partial \mu} \rightarrow \frac{1}{r} \frac{\partial}{\partial \frac{1}{r}} = \frac{1}{r} \frac{\partial r}{\partial \frac{1}{r}} \frac{\partial}{\partial r} = \frac{1}{r} (-r^2) \frac{\partial}{\partial r} = -r \frac{\partial}{\partial r}$$

•
$$\beta \sim O(\lambda^3)$$

•
$$-r\frac{\partial}{\partial r}P_B(t,r) = -r\frac{\partial}{\partial r}\left[\frac{KH}{4\pi}\ln(Hr)\left\{1 - \frac{\lambda^2H^2}{32\pi^2}\ln(Hr) + O(\lambda^4)\right\}\right]$$

• $-r \times \frac{1}{r}\frac{KH}{4\pi}\ln(Hr) \times \left(-\frac{\lambda^2H^2}{16\pi^2}\right)$

•
$$2\gamma_B \times P_B(t,r) = 2 \times \left(-\frac{\lambda^2 H^2}{32\pi^2}\right) \times \left[\frac{KH}{4\pi} \ln(Hr) \left\{1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4)\right\}\right]$$

= $\left(-\frac{\lambda^2 H^2}{16\pi^2}\right) \times \frac{KH}{4\pi} \ln(Hr)$

Differences between Matter + GR and Pure GR

- The same $h_{\mu\nu}$ provide the Langevin kinetic term $\dot{h}_{\mu\nu}-\dot{\chi}_{\mu\nu}$ and the induced potential out of $\partial h_{\mu\nu}$
 - Strange but true: check against the explicit computation in single field model

•
$$\left(1 + \frac{\lambda}{2}\Phi\right)\partial_{\mu}\left[\left(1 + \frac{\lambda}{2}\Phi\right)\sqrt{-g}g^{\mu\nu}\partial_{\nu}\Phi\right] \rightarrow -3Ha^{3}\left(1 + \frac{\lambda}{2}\varphi_{0}\right)^{2}\left(\dot{\varphi} - \dot{\varphi}_{0}\right) + \left(1 + \frac{\lambda}{2}\varphi_{0}\right)\partial_{\mu}\left[\frac{\lambda}{4}\sqrt{-g}g^{\mu\nu}\partial_{\nu}\langle\Omega|\Phi^{2}|\Omega\rangle\right]$$

• Background changes $\eta_{\mu\nu} \to \tilde{g}_{\mu\nu}$ \Longrightarrow gauge fixing changes

• Old:
$$\mathcal{L}_{GF} = -\frac{1}{2} a^{D-2} \eta^{\mu\nu} F_{\mu} F_{\nu}$$
, $F_{\mu} = \eta^{\rho\sigma} \left[h_{\mu\rho,\sigma} - \frac{1}{2} h_{\rho\sigma,\mu} + (D-2) a H h_{\mu\rho} \delta_{\sigma}^{0} \right]$

• New:
$$\tilde{\mathcal{L}}_{GF} = -\frac{1}{2}a^{D-2}\tilde{g}^{\mu\nu}\tilde{F}_{\mu}\tilde{F}_{\nu}$$
 , $\tilde{F}_{\mu} = \tilde{g}^{\rho\sigma}\left[h_{\mu\rho,\sigma} - \frac{1}{2}h_{\rho\sigma,\mu} + (D-2)aHh_{\mu\rho}\delta_{\sigma}^{0}\right]$

Ghost contributions

Graviton propagator in $ilde{g}_{\mu u}$ background

$$\bullet \quad \tilde{g}_{\mu\nu} = \begin{pmatrix} -N^2 + \gamma_{k\ell} N^k N^\ell & -\gamma_{j\ell} N^\ell \\ -\gamma_{ik} N^k & \gamma_{ij} \end{pmatrix} = \begin{pmatrix} \gamma_{k\ell} N^k N^\ell & -\gamma_{j\ell} N^\ell \\ -\gamma_{ik} N^k & \gamma_{ij} \end{pmatrix} - \begin{pmatrix} -N \\ 0 \end{pmatrix}_{\mu} \begin{pmatrix} -N \\ 0 \end{pmatrix}_{\nu} \equiv \bar{\gamma}_{\mu\nu} - u_{\mu} u_{\nu}$$

•
$$\tilde{g}^{\mu\nu} = \begin{pmatrix} -\frac{1}{N^2} & -\frac{N^j}{N^2} \\ -\frac{N^i}{N^2} & \gamma^{ij} - \frac{N^i N^j}{N^2} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & \gamma^{ij} \end{pmatrix} - \begin{pmatrix} \frac{1}{N} \\ \frac{N^i}{N} \end{pmatrix}^{\mu} \begin{pmatrix} \frac{1}{N} \\ \frac{N^j}{N} \end{pmatrix}^{\nu} \equiv \bar{\gamma}^{\mu\nu} - u^{\mu}\mu^{\nu}$$

•
$$-N\delta_{\mu}^{0} = u^{\mu}$$
, $u^{\mu} = -N\tilde{g}^{0\mu}$, $\tilde{g}^{\mu\nu}u_{\mu}u_{\nu} = -1 = \tilde{g}_{\mu\nu}u^{\mu}u^{\nu}$, $\tilde{H}^{2} = \frac{H^{2}}{N^{2}} = -\tilde{g}^{00}H^{2}$

• New GR propagator takes the same expression but Replace $\bar{\eta}_{\alpha\beta}$ with $\bar{\gamma}_{\alpha\beta}$. $i\tilde{\Delta}_A(x;x')$: replace H with \tilde{H}

$$i\left[\alpha_{\beta}\widetilde{\Delta}_{\rho\sigma}\right](x;x') = \left[2\,\overline{\gamma}_{\alpha(\rho}\overline{\gamma}_{\sigma)\beta} - \frac{2}{D-3}\,\overline{\gamma}_{\alpha\beta}\overline{\gamma}_{\rho\sigma}\right]i\widetilde{\Delta}_{A}(x;x')$$
$$-4\,u_{(\alpha}\overline{\gamma}_{\beta)(\rho}u_{\sigma)}\,i\widetilde{\Delta}_{B}(x;x')$$
$$+\frac{2}{(D-3)(D-2)}\left[(D-3)u_{\alpha}u_{\beta} + \overline{\gamma}_{\alpha\beta}\right]\left[(D-3)u_{\rho}u_{\sigma} + \overline{\gamma}_{\rho\sigma}\right]i\widetilde{\Delta}_{C}(x;x')$$

Rules for the leading log eqn. & induced stress tensors

•
$$\frac{\delta S[h]}{\delta h_{\mu\nu}}_{LLOg} = a^4 \sqrt{\tilde{g}} T[h]^{\mu\nu}|_{ind}$$

- LHS (dropping unimportant terms):
- Temporal changes on the fields are much slower than the one on a(t)
 - E.g. $\frac{d}{dt}[a^3h_{\mu\nu}] \to 3Ha^3h_{\mu\nu}$ & drop $a^3\dot{h}_{\mu\nu}$
- Only keep the first time derivative on the field & subtract it with stochastic jitter
 - E.g. $\partial_{\alpha}\partial_{\beta}h_{\mu\nu} + \partial_{\alpha}h_{\mu\nu} \rightarrow \delta^{0}_{\alpha}[\dot{h}_{\mu\nu} \dot{\chi}_{\mu\nu}]$
- RHS (integrating out differentiated fields):

$$h_{\alpha\rho,\gamma}h_{\beta\sigma,\delta} \longrightarrow \partial_{\gamma}\partial_{\delta}' i \left[\alpha\rho\widetilde{\Delta}_{\beta\sigma} \right] (x;x') \Big|_{x=x'}$$

$$h_{\alpha\rho,\gamma}h_{\beta\sigma} \longrightarrow \partial_{\gamma} i \left[\alpha\rho\widetilde{\Delta}_{\beta\sigma} \right] (x;x') \Big|_{x=x'}$$

Example

$$\mathcal{L}_{inv} + \widetilde{\mathcal{L}}_{GF} \equiv \mathcal{L}_{1+2+3} + \mathcal{L}_{4+5} + \mathcal{L}_{6}$$

$$\mathcal{L}_{1+2+3} = a^2 \sqrt{-\widetilde{g}} \, \widetilde{g}^{\alpha\beta} \widetilde{g}^{\rho\sigma} \widetilde{g}^{\gamma\delta} \times \left\{ -\frac{1}{4} h_{\alpha\rho,\gamma} h_{\beta\sigma,\delta} + \frac{1}{8} h_{\alpha\beta,\gamma} h_{\rho\sigma,\delta} + a^2 \widetilde{H}^2 h_{\gamma\rho} u_{\sigma} h_{\delta\alpha} u_{\beta} \right\}$$

$$a^{4}\sqrt{-\tilde{g}}\left\{\frac{3}{2}\tilde{g}^{00}H\left[\tilde{g}^{\rho\mu}\tilde{g}^{\sigma\nu}-\frac{1}{2}\tilde{g}^{\rho\sigma}\tilde{g}^{\mu\nu}\right]\left[\dot{h}_{\rho\sigma}-\dot{\chi}_{\rho\sigma}\right]+2\tilde{H}^{2}u^{(\mu}\tilde{g}^{\nu)(\alpha}u^{\beta)}h_{\alpha\beta}\right.$$

$$\left.+\kappa\tilde{H}^{2}\left[\frac{1}{2}\tilde{g}^{\mu\nu}u^{(\alpha}\tilde{g}^{\beta)(\rho}u^{\sigma)}-2u^{(\mu}\tilde{g}^{\nu)(\alpha}\tilde{g}^{\beta)(\rho}u^{\sigma)}-u^{(\alpha}\tilde{g}^{\beta)(\mu}\tilde{g}^{\nu)(\rho}u^{\sigma)}\right]h_{\alpha\beta}h_{\rho\sigma}\right\} = a^{4}\sqrt{-\tilde{g}}\frac{\kappa\tilde{H}^{4}}{8\pi^{2}}\left[-\frac{1}{2}\tilde{g}^{\mu\nu}+6u^{\mu}u^{\nu}\right]$$

Some remarks

- Inflationary production of MMC scalars & gravitons induces large logs
 - Eventually overwhelm small couplings
 perturbation theory breaks down
 - Can change force laws & evolution of the backgrounds even at late times
- Leading Logarithm Resummation is accomplished by
 - A variant of Starobinsky formalism and a variant of RG

Pure GR

- R^2 , C^2 counterterms are gauge dependent:
 - Need 1-loop computation in constant $\tilde{g}_{\mu\nu}$ gauge \Rightarrow a variant of RG technique
- Check the induced-graviton stress tensor:
 - compute the 1-loop, 1-point function in $\tilde{g}_{\mu\nu}=$ const. for pure GR
- Check 1-loop stochastic RG predictions:
 - Compute 2-point function of graviton (dimensionally regulated and BPHZ renormalized)
 - Solve the linearized Einstein equation with graviton self-energy in a new gauge
- Reorganized the Langevin equation to distinguish h_{ij} from $h_{0\mu}$