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Conventional bias expansion

- For illustration, let’s consider the simplest case
- Local-In-Matter-Density (LIMD) bias

- Neglect gravitational evolution (i.e., bias In
Lagrangian space)
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b,,’s are the bare bias parameters



Conventional renormalization of bias

- Bias renormalization in conventional PT (orig., McDonald 20006)

- Straightforward calculation of the correlation function
(Assuming Gaussian stats):
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- Defining renormalized bias parameters
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Statistically renormalized bias parameters

- Instead of the conventional procedure above, the renormalized bias
parameters are equivalently defined statistically without renormalizing order-
by-order:
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- This is the same as the renormalized bias parameters derived by conventional
procedure. In fact, applying Taylor expansion
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- Exactly agree with the conventional renormalized parameters

- The above statistically defined parameters extend the concept of
conventionally defined renormalized bias parameters

- They do not have to be perturbative, i.e., no problem with non-perturbative bias
such as Press-Schechter, Peaks, etc.

- Works even in the case of non-Gaussian stats



Relation to the Separate Universe approach

- The renormalized bias parameters are closely related to the
Peak-Background Split method in the Separate Universe
approach (Schmidt, Jeong and Desjacques 2013)

- In the LIMD model,
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Renormalized bias functions

- The renormalized bias parameters => Renormalized bias
functions

- One can consider more general situations: the biased field is a
functional (instead of a function) of the linear density field

- In this way, any conceivable (generally nonlocal) bias models can
be considered

- The renormalized bias functions are defined by the statistical
average of functional derivatives (in Lagrangian space)
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The integrated perturbation theory (iPT)

- The integrated perturbation theory (iPT)
- Matsubara 2011, PRD 83, 083518

- The gravitational evolutions are treated perturbatively
(using Lagrangian perturbation theory)

- But the bias is non-perturbatively included from the

beginning, using the concept of renormalized bias
functions

- As a result, bias is NOT expanded into perturbative series

- In particular, bias models with singular functions, such as
Press-Schechter (with step function) and Peaks (with delta

function), can be properly calculated in the framework of
PT



Summary (on the bias renormalization)

- Statistically defined bias parameters (or
bias functions) do NOT require
conventional order-by-order
renormalization

- bias parameters NOT defined at the field level,
but only statistically defined

- Instead, they are renormalized from the

first place ("renormalized” in the sense of
conventional PT)



The integrated perturbation theory
for cosmological tensor fields

Selected topics from:
T. Matsubara, PRD 110, 063543 [arXi1v:2210.10435] (Paper I)
T. Matsubara, PRD 110, 063544 [arX1v:2210.11085] (Paper 1I)
T. Matsubara, PRD 110, 063545 [arX1v:2304.13304] (Paper III)
T. Matsubara, PRD 110, 063546 [arX1v:2405.09038] (Paper 1V)
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Tensor fields in cosmo

(LSS), weak lensing

scale structure
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Example: galaxy shape alignment

- The spatial patterns of galaxy shapes:

- The alignments are statistically correlated to
the initial condition of the Universe, and thus
to the large-scale structure of the universe

“Shape—position” alignment “Shape—shape” alignment

Neighbor can be Both galaxies must be
of any mass/shape prolate candidates
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Pandya+ 2019






Moments of galaxy shapes

- Example of higher-rank tensor field

- higher-order moments of galaxy shape
J &’ (ay, — i) - (2], — @) p(2)
J &3 p(’)

- The higher-order shape field
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- (Normalization is arbitrary)



Spherical basis

- Spherical basis in Cartesian coordinates
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- Traceless spherical tensor basis
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Decomposition of tensor into spherical basis

- Any symmetric tensor can be decomposed
into traceless tensors
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- Decomposition of traceless tensor field into
spherical basis:
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Power spectrum of tensor field

- Definition of the power spectrum in Fourier space
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- Statistical isotropy

- When the Universe is statistically isotropic, the power spectrum
should be invariant under the coordinate rotation

- In this case, the power spectrum should take the following form,

~ |
Spherical harmonics

3j-symbol L
Lt (Racah’s normalization)




Symmetries of invariant spectrum
- Complex conjugate
Pégll%(i*(k) = Pégll?xlz (k) i.e., real function

- Parity
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- Interchange
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Projection effects

Line of sight s 2
‘*I >
. 3D shape tensor
Projected 2D tensor

- Measurable tensors in realistic observations
- 2D projected tensor on the sky

fxiyis(®) = Pirjy - Pij. Fxjr g, ()

Pi; = 0;; — 2;2; (projection tensor)

(distant-observer approximation applied)



2D irreducible decomposition

- 2D spherical basis
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- Decomposition of 2D traceless tensor into 2D spherical basis
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- Relation between 3D & 2D irreducible tensors
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- (The last eq. shows that the projected tensor from a 3D traceless
tensor remains traceless also in the projected 2D space)



Flip symmetry of projected field

- Flip symmetry: invariance under z YT
+s + s 18 S
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- Parity+flip
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- Parity+flip in distant-observer limit is more similar to the “parity” in
full-sky spherical coordinates



E/B decomposition of projected field

- In Fourier space,
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- PF symmetry is simply given in the E/B modes
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- When px+s=even, E mode is parity even, B mode is parity odd

- When px+s=0dd, E mode is parity odd, B mode is parity even



F/B decomposition

7 E mode B mode




Distant-observer approximation

- DOA: clustering scales are much smaller
than the distance to the objects
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Spherical coordinates — Cartesian Coordinates




Full-sky formulation: spherical coordinates

- Spherical basis in spherical coordinates
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Wigner’s rotation matrix
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Application of the perturbation theory

- Theoretical predictions from perturbation theory

- In Paper |, systematic methods to derive the invariant
spectrum from the “integrated Perturbation Theory”
(iIPT, Matsubara 2011) are formulated

- In Paper |l, further methods to calculate nonlinear
corrections in perturbation theory are developed

- In Paper lll, the IPT is applied to the formulas of
projection effects

- In Paper |V, the formulas are generalized to those In
the full-sky, without assuming the flat-sky, distant-
observer limit.



