Testing the lepton PDFs of the proton at lepton-proton colliders

Subhojit Roy

Argonne National Laboratory

Based on arxiv:2408.12644

In collaboration with L. Rold, A. Medina, C. Wagner

Lepton PDFs

- At zeroth order in perturbation theory the lepton carries all the momentum of the beam
- At high energies, collinear radiation emitted by splitting of the initial state must be taken into account.
- The case of collinear photon emission from an electron gives the Equivalent Photon Approximation (EPA): given by the Weizsacker-Williams spectrum $f_{\gamma,l}(x) \approx Q_{\ell}^2 \frac{\alpha}{2\pi} P_{\gamma,\ell}(x) \ln \frac{E^2}{m_{\ell}^2}$

Weizsiieker, Kopenhagen

https://doi.org/10.1007/BF01333110

Williams https://doi.org/10.1103/PhysRev.45.729

Splitting func: $P_{\gamma,\ell}(x) = \frac{1+(1-x)^2}{x}$

the probability of the lepton to emit a photon with a fraction x of its longitudinal momentum.

These radiated photons can furthermore provide other fermion parton content to the colliding lepton

via the $\gamma \to f\bar{f}$ splitting function $P_{f,\gamma}(z_f) = 1 - 2z_f + 2z_f^2$ $z_f \to z_f \to z_f$ the fraction of momentum of the fermion with respect to the photon.

The EPA has been generalized to describe EW gauge bosons in high-energy collisions, in what is now known as Effective Vector Approximation (EVA)

Lepton PDFs

This previous description becomes inadequate at some high scale

At high energies $E >> m_{\ell}$ the collinear logarithmic term can become sizeable and needs to be resummed for reliable predictions.

Leads to solving QED analog of Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations

Generalization of Parton Distribution Functions (PDFs) for charged leptons

Recently, it has been computed for electron and muons

Garosi, et al. https://arxiv.org/abs/2303.16964 Han, et al. https://arxiv.org/abs/2007.14300 https://arxiv.org/abs/2103.09844

Lepton PDFs of proton

A similar description applies to the QED interactions within the proton.

When estimating proton PDFs involving QED-induced processes, hadronization effects lead to a modification of the logarithmic factor to $\ln(\mu_F^2/\Lambda^2)$ $\mu_F \rightarrow \text{factorization scale}$ $\Lambda \rightarrow \text{typical hadronic scale}$ arXiv:2005.06477 Buonocore, et al.

In a pure QCD model, protons consist of valence quarks, with abundant soft and collinear QCD radiation.

Order of quark and gluon PDFs $(lpha_S L)^n$, $L=\ln(\mu_F/\Lambda)$

If $\ L \sim 1/lpha_S$, all the contributions becomes relevant

Notes:

- DGLAP equations account for perturbative evolution (renormalization scale dependence).
- Non-perturbative initial conditions (momentum fraction dependence) are extracted through global fits to DIS and collider data
- Naive expection from power counting that the lepton density in the proton very small $f_\ell \sim lpha^2 f_q$ But it could be large due to large logarithimic factors

Power counting schemes

quark and gluon PDF $(lpha_S L)^n\,,\,L=\ln(\mu_F/\Lambda)$

The photon PDF is reduced by a factor of αL (collinear-enhanced term)at the LO compared to the quark PDF.

$$\alpha \sim \alpha_s^2 \qquad L \sim 1/\alpha_s \qquad \rightarrow \alpha L \sim \alpha_s$$

- Similarly, leptons will be suppressed by a factor of $(\alpha L)^2 \sim lpha_s^2$ at the LO
- So, $f_{p/q}$ and $f_{p/g} \sim (\alpha_s L)^n \sim \mathcal{O}(1)$ $f_{p/\gamma} \sim \alpha_s$ $f_{p/\ell} \sim \alpha_s^2 C_\ell$ $C_\ell = 3/20$

 Recently, the lepton PDFs of proton has been computed by Buonocore, et al.

arXiv:2005.06477

 One can think of the LHC as a lepton collider with varying energy. (not in terms of backgrounds)

Claim:

 The LHC can probe lepto-philic Z' up to 600 GeV, leptoquarks and doubly charged scalars up to 2.5--3 TeV with order-one couplings at high luminosity

Resonant Z-boson production at proton-lepton colliders:

For HERA and EIC, e^+ from P and the e^- from e^- collides and produce Z-boson For MUIC, the same process would take place involving μ instead of electron

Another processes: involving quarks coming from the colliding proton and lepton beams

PDF formalism is crucial as leptons and quarks originating from photons are in the collinear regime.

- Why Focus on a Lepton-Proton Collider Instead of a Hadron-Hadron Collider Like the LHC?
- Lepton involving process $p(\ell^{\pm})p(\ell^{\mp}) \to Z$ cannot be tested at hadron colliders, as the quark initiated processes $p(q)p(\bar{q}) \to Z$ dominate.
- Making the Proton-Lepton collider a unique machine to study lepton initiated Z-resonant production and test the lepton PDFs of proton.
- There is a need to distinguish lepton-initiated processes from quark-initiated processes at the proton-lepton colliders.

• Useful variable:
$$E - P_z \equiv \sum_i (E^i - P_z^i)$$

Sum runs over all detected particles

 $P_z \rightarrow$ momentum along the Z-direction $E \rightarrow$ Energy

Kinematics:

Resonance featurs the relation: $4E_1E_2\sim m_Z^2$

$$\rightarrow 4E_{e^-/e^-}E_{p/e^+} \sim m_Z^2$$

$$x_{e^-/e^-}E_e \qquad x_{p/e^+}E_p$$

Energies of the colliding partons

- Electron PDFs of electron peaks at $~~x_{e^-/e^-}\simeq 1$ (at the LO, its a Dirac-Delta func)
- The largest contribution to the resonant Z-production cross section from the lepton-initiated process occurs for

$$x_{p/e^+} = \frac{m_Z^2}{4E_e E_p}$$

- The lepton-initiated process mostly occurs for a fixed value of ${\mathcal X}_p/e^+$,

while for the quark-initiated process, a range of $x_{e^-/q}$ and $x_{p/q}$ exists for which significant contributions

[arXiv:0911.0884]

Operated from 1992 to 2007

Electrons or positrons colliding with protons

Proton ~ 920 GeV and Electrons ~ 27.5 GeV

Integrated luminosity: 500 Pb^{-1} per collider experiment (H1 and ZEUS)

$$x_{p/e^+} = \frac{m_Z^2}{4E_e E_p}$$

Lepton-initiated Z production

$$E_{p/e^+} \sim 75 \,\mathrm{GeV}$$

 $x_{p/e^+} \sim 0.082$

Energy sum of decaying objects coming from the produced Z-boson

Focus to the di-jet decay mode of Z

- These distributions suggest that the quark-initiated processes occur for a wide range of longituidinal momentum fraction of the quarks coming from the proton and the lepton.
- Meanwhile, the lepton-initiated process occurs at approximately a fixed value of the longitudinal momentum fraction of the lepton originating from the proton.

$\eta\text{-distributions}$ of the leading two jets

 η -distributions of jets from Z, produced through the lepton-initited process at MuIC

 $P(\mu^+)\mu^- \to Z \to jj$

- $E_{\mu} \sim 1 \,\mathrm{TeV}$ $E_p \sim 275 \,\mathrm{GeV}$
- $\bullet \to E_{p/\mu^+} \sim 2 \,\mathrm{GeV}$

Decaying objects carry longituidinal boosts along the muon-beam direction ($-\hat{z}$ -direction)

Dominant contribution to Z-production through lepton-initited process

$$E - P_z \equiv \sum_i (E^i - P_z^i)$$

sum runs over all detected particles

 $E \rightarrow \text{Energy}$ $P_z \rightarrow \text{momentum along the z-direction}$ (proton beam direction) •According to longitudinal momentum conservation this quantity should be equal to $2x_{e/j}E_e$ $j \rightarrow \text{colliding parton within the electron}$

e

 \hat{z}

• cut of $E - P_z$ close to $2E_e$ leads to enhancing the purely electron initiated process due to the almost Dirac delta-like behaviour of the electron PDFs of electron near $x_{e/e} \sim 1$

- kinematical distributions of the quark-initiated and photon-initiated processes predominantly peak at relatively small $x_{e^-/q}$ and $x_{e^-/\gamma} \rightarrow \text{significantly smaller } E P_z$
- cut of $E P_z$ close to $2E_e$ can separate these two contributions

Other relevant SM processes:

 Di-jet production processes involving photon partons from the lepton beam and gluon/quark partons from the proton

• Selection cuts of $E - P_z > 52 \,\text{GeV}$ \longrightarrow Only processes with incoming photons or quarks from the electron carrying more than 26 GeV. i.e., $x_{e/\gamma}$, $x_{e/q} > 0.945$ contribute.

Photon PDFs of the electron is not too small,
 even at relatively large x-values.

Photon from electron involving processes dominate.

• A di-jet background with no lepton can arise from processes such as $pe^- \rightarrow je^-$, j j e⁻ and $je^-\gamma$ where the final state electron is misidentified as a jet.

 \blacktriangleright Negligible number of events in the signal region considering 10^{-3} fake rate

Other production processes are also suppressed.

$M_{j_1j_2}$ distribution

- Perform a cut-based analysis selection cuts:
 - $E P_Z > 52 \,\mathrm{GeV}$
 - $P_T(j) > 30 \, {\rm GeV}$
 - $|\eta(j)| < 2$
 - 5 GeV selection window of $M_{j_1j_2}$ and $E_{j_1j_2}$ around 91 GeV and 103 GeV, respectively

Applying the selection cuts

- Obtain 73 signal events and 267 background events considering the combined integrated luminosity of $0.98~{\rm fb}^{-1}$ of H1 and ZEUS detectors
- Signal significance of around 4.5σ at HERA
- Since our calculations are at LO in QCD and QED, and no showering, hadronization, or detector effects are included, it's better to extract the di-jet background from data by extrapolating from sidebands ---- similar to the approach used for the di-photon background in the Higgs discovery at the LHC.
- Similar analysis can be done in EIC. We obtain 4.3 σ signal significance there for the same process.
- Due to the larger luminosity at the EIC, leptonic decay modes (particularly involving muons) of the Z boson can be studied.

NLO corrections

There are virtual corrections at one-loop level and real corrections from radiation to the processes that we discuss. For resonant Z production,

NLO QED corrections can be obtained via the photon initiated processes:

 $\gamma e^- \rightarrow Z e^- \quad \hat{\sigma}_{\gamma e^-} \sim \alpha^2 / m_Z^2 \sim \alpha_s^4 / m_Z^2 \quad \text{After convolution with the PDFs} \quad \sigma \sim \alpha_s^5 C_\ell / m_Z^2$

Corrections from processes with virtual particles in a loop, as well as those with a final photon

 $e^+e^- \to Z\gamma \qquad \sigma \sim \alpha_s^6 C_\ell / m_Z^2$

• NLO QCD corrections in Z + j production

m gq
ightarrow Zq ~
m and~ q ar q
ightarrow Zg (initial quark or gluon coming from the colliding lepton) $\sigma \sim lpha_s^5/m_Z^2$

- The lepton-initiated resonant process has $x_{e^-/e^-} \simeq 1$, while the NLO QCD correction processes peak at low $x_{e^-/q,g}$
- A cut on $E P_Z$ can reject these corrections.
- Finally, processes with a final photon:

 $q \bar{q}
ightarrow Z \gamma \,$ are suppressed by $lpha_s^2$ compared with the resonant production.

Another possibility:

- Study of non-resonant di-leptonic final state
- Signal is dominated by photon mediated t/u and s-channel processes involving the lepton PDFs of the proton
- Concentrate on the ee, $e\mu$ and $\mu\mu$ final states. (interesting: same sign different flavor)
 - $E P_Z$ of processes involing electron PDFs of electron beam peaks at $2E_e \sim 55 \,\mathrm{GeV}$ at HERA

involves positron, electron PDFs of proton

• e^-e^+ , $\mu^+\mu^-$ final states can produce via the so-called photoproduction processes Involing photon PDFs of proton and electron.

 $E - P_Z$ would peak relatively smaller value

One can compare with this with the existing data of HERA

Comparison with data

https://arxiv.org/pdf/0907.3627

Multi-Leptons at HERA (0.94 fb^{-1})

Multi-Leptons HERA analysis

Selection cuts:

- at least two central leptons (electrons or muons) $(20^\circ < \theta < 150^\circ)$
- Leading lepton $P_T^\ell > 10 \, {\rm GeV}$, other leptons $P_T^\ell > 5 \, {\rm GeV}$

 ${\mbox{ }}{\mbox{ }}$ Isolated leptons $\Delta R>0.5$

- • $E P_Z < 45 \,\text{GeV}$ cut to isolate the di-leptonic $(e^+e^-, \mu^+\mu^-)$ events from photo-production regime.
- The detector efficiencies for e and μ in the central region: e - 80% (HI) and 90% (ZEUS), $\mu - 90\%$ (HI) and 55% (ZEUS).
 - $0.005 \lesssim x_{p/e,\mu} \lesssim 0.03$ region contributes under these cuts
- Check cross-section uncertainties by varying the renormalization scale by a factor of 2 up and down.
 Obtain large uncertainty which reflects that our results are only accurate at LO.

Sample	Data SM		Pair Production (GRAPE)	NC DIS + QEDC	
ee	873	895 ± 57	724 ± 41	171 ± 28	
$\mu\mu$	298	320 ± 36	320 ± 36	< 0.5	
$e\mu$	173	167 ± 10	152 ± 9	15 ± 3	
eee	116	119 ± 7	117 ± 6	< 4	
$e\mu\mu$	140	147 ± 15	147 ± 15	< 0.5	
$(\gamma\gamma)_e$	284	293 ± 18	289 ± 18	4 ± 1	
$(\gamma\gamma)_{\mu}$	235	247 ± 26	247 ± 26	< 0.5	

Our results:

final state	ℓ-init	γ -init	γ -init _{$E-P_z>45 \text{GeV}$}
e^+e^-	216^{+34}_{-41}	560^{+54}_{-55}	70^{+7}_{-8}
e^-e^-	346^{+65}_{-64}	_	—
$\mu^+\mu^-$	12^{+2}_{-2}	430^{+41}_{-43}	54^{+5}_{-6}
$e^-\mu^-$	174^{+39}_{-32}	_	_

Comparison with data

- We estimate more di-leptonic events than observed at HERA.
- Agreement in a few percent is found for ee and $\mu\mu$ events for E Pz > 45 GeV region where lepton-initiated processes mostly dominates
- Our results show 632_{-113}^{+105} (ee) and 66_{-8}^{+7} ($\mu\mu$) events vs. 418 (ee) and 63 ($\mu\mu$) reported.
- Agreement is worse in the $e\mu$ channel, with 348^{+79}_{-64} events estimated vs. 173 observed.
- Overestimates are seen in photon-initiated di-lepton pair-production (The rate of this processes involves the photon PDFs of the electron and the proton.) with $E - P_z < 45$ GeV: 490^{+47}_{-47} (ee) and 376^{+36}_{-36} ($\mu\mu$) events estimated vs. 284 (ee) and 235 ($\mu\mu$) observed.

These discrepancies could originate from various factors:

- higher order corrections
- showering, hadronization
 estimated numbers may drop to lower values
- proper detector simulation
- Alternatively, this may suggest an overestimation of lepton and photon PDFs in the proton.
 Further theoretical and experimental analysis is needed to understand these discrepancies

EIC

Like at HERA, di-leptonic final states from non-resonant processes can be studied at the EIC to test these PDFs.

 $e^+e^- \rightarrow 15067$

Lepton-initiated proceses:

 $E - P_Z \sim 2E_e \sim 40 \,\mathrm{GeV}$

- Additionally, same-flavor, opposite-charge di-lepton final states can arise from photo-production predominantly in the regions of $0.1 \leq x_{e^-/\gamma} \leq 1.0$ and $0.04 \leq x_{p/\gamma} \leq 0.2$, under the same phase space cuts
- 23900 e⁺e⁻ total events at the LO under the same cuts, out of which 2780 events occur in the E - P_Z > 35 GeV region similar numbers for μ⁺μ⁻
- Once future data is available, a detailed study of these processes can be performed at the EIC to test the lepton PDFs of the proton

MuIC

Proton ~ 275 GeV and Muons ~ 1 TeV
Integrated luminosity: 400 fb⁻¹
• selection criteria: $P_T(\ell) > 5 \text{ GeV}, |\eta_\ell| < 2.5$ • $P\mu^- \rightarrow \mu^+ \mu^- \sim 150 \text{ events}$ • $\mu^-\mu^- \sim 600 \text{ events}$ • $\mu^-e^{\pm} \sim 720 \text{ events}$ • $e^+e^- \sim 30 \text{ events}$

Furthermore,

opposite-sign same-flavor di-lepton final states can be produced through photoproduction, involving the photon PDFs of the proton and muon, with $E - P_z$ peaking at relatively low values.

Consider rare SM signatures at hadron colliders like LHC

Non-resonant production of back-to-back same sign and/or different favour di-leptons

arXiv:2005.06477

At the LO

 $p_{T,\ell} > 20 \,\text{GeV}, \quad |\eta| < 2.4, \quad \mu_{\text{F}} = p_{T,\ell}$

Buonocore, et al.

	$e^+\mu^-$	$e^+\tau^-$	$\mu^+ \tau^-$	e^+e^+	$\mu^+\mu^+$	$\tau^+ \tau^+$
$\sigma_{13 {\rm TeV}}$ [fb]	$0.29^{+0.13}_{-0.10}$	$0.18\substack{+0.11 \\ -0.08}$	$0.16\substack{+0.10 \\ -0.07}$	$0.24_{-0.08}^{+0.10}$	$0.19\substack{+0.09 \\ -0.07}$	$0.08\substack{+0.06 \\ -0.04}$
$\sigma_{27 {\rm TeV}}$ [fb]	$0.53_{-0.18}^{+0.25}$	$0.34_{-0.15}^{+0.21}$	$0.30\substack{+0.19 \\ -0.14}$	$0.440_{-0.14}^{+0.19}$	$0.34_{-0.12}^{+0.16}$	$0.14_{-0.07}^{+0.12}$

Number of events of such processes are estimated using the lepton PDFs of the proton

Measurable number of events are expected at HL-LHC

- For example, at $3ab^{-1}$ of data, $850 e^+\mu^-$, $550e^+\tau^-$ and $500\mu^+\tau^-$ events are expects at HL-LHC, considering these phase space cuts
- Analysis on this at HL-LHC can also verify the distributions of these leptonic PDFs of proton
- This could be even crucial for studying BSM scenarios, like flavor-violating scalars, as precise knowledge of the SM background is required.

Conclusions

- PDFs are key to hadron collider phenomenology, describing the momentum distribution of proton constituents.
- The lepton PDFs of the proton have been recently computed (LuxLep).
- This is crucial for LHC searches in BSM scenarios, including hadrophobic and leptophilic Z', doubly charged scalars, leptoquarks, flavor-violating leptophilic scalars, etc.
- We propose to validate the lepton content of the proton by analyzing both non-resonant di-lepton production and di-jets from resonantly produced Z boson, Using existing HERA data and future measurements from other lepton-proton colliders
 - For Z-resonant production, we propose conducting this study at pe colliders rather than at a hadron collider like the LHC.
 - Focus to di-jet decay modes of Z, due to large branching fractions
 - Feasible to study the leptonic decay modes of the Z boson, particularly in the di-muon final state, at the EIC
 - For non-resonant di-lepton final states, consider all flavor combinations and charge pairings.
 - These can explore a smaller $x_{p/e,\mu}$ region of the proton lepton PDFs compared to resonant Z-boson production.
 - Comparison with HERA data indicates a slight overestimation of di-lepton production rates by a few tens of percent.
 - A dedicated theoretical and experimental study could clarify these discrepancies.

Extra

NLO corrections in non-resonant dilepton processes

- For the non-resonant di-lepton production there are real corrections from photon emission of initial and final particles, with the same initial state as the leading processes, that are suppressed by α_s^2 compared with them.
- Di-lepton plus jet final states can be obtained from $\gamma q \to \ell \ell q$, being suppressed by α_s only, compared with the leading processes.
- When considering the quark and gluon content of the electron one can also obtain di-lepton plus jet final states which are suppressed by α_s
- The kinematic distributions of processes initiated by partons of the electron, other than the electron itself, are peaked towards low values of $E P_z$, thus the rates of these processes can be controlled by cuts on this variable.
- Virtual QED corrections are expected to be suppressed by α_s^2 compared with the real ones.
- A dedicated analysis containing these corrections, as well as parton showering, is needed for a precise calculation.