Comments on E-string theory

Hiroyuki Shimizu

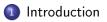
Kavli IPMU

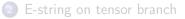
arXiv:1608.05894 with Y.Tachikawa

arXiv:1703.01013 with Y.Tachikawa, G.Zafrir

@Exceptional Groups as Symmetries of Nature '17

July 21, 2017





3 1-instanton moduli space as Higgs branch

Heterotic small instantons

• Heterotic string compactified on $\mathbb{R}^{1,5} \times K3$.

6d $\mathcal{N}{=}(1,0)$ supersymmetry. Massless multiplets:

- hypermultiplet $(\phi^{i=1,2,3,4})$
- vector multiplet (A_{μ})
- tensor multiplet $(B^+_{\mu\nu}, \phi)$, ϕ : dilaton
- gravity multiplet $(g_{\mu\nu}, B^-_{\mu\nu})$
- Anomaly cancellation: gauge bundle with instanton number 24 on K3.
 What happens in the limit of the zero-sized instanton?

$\mathrm{SO}(32)$ heterotic string

- k small instanton shrinks at the same point on K3
 - \rightarrow additional massless multiplets. [Witten:95]
 - $\operatorname{Sp}(k)$ vector multiplet
 - hypermultiplets in the $(\mathbf{2k},\mathbf{32})$ rep of $\mathrm{Sp}(k)\times\mathrm{SO}(32)$

• antisymmetric hypermultplet of $\operatorname{Sp}(k)$

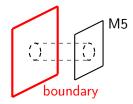
- Why: k D5-brane in Type I string or ADHM construction of \overline{k} -instantons in SO(32) gauge theory on \mathbb{R}^4 .
- The situation is more interesting in $E_8 \times E_8$ heterotic string.

$E_8 \times E_8$ heterotic string

- k small instantons of E₈ shrink at the same point [Ganor, Hanany:96]
 → 6d N=(1,0) superconformal field theory (rank-k E-string theory).
- Include tensionless string in spectrum (called E-string).
- Flavor symmetry: E_8 for k = 1, $E_8 \times SU(2)_F$ for k > 1.

In this talk, we only consider k = 1 case.

Heterotic-M theory picture



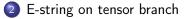
- Strong coupling limit of $E_8 \times E_8$ heterotic string: M-theory on S^1/\mathbb{Z}_2 .[Horava,Witten:95]
- A 10d E_8 vector multiplet at each boundary.
- Higgs branch: small instanton becomes finite-sized.
- Tensor branch: small instanton leaves from boundary as an M5.
- E-string: M2-branes suspended b/w an M5 and the boundary. Non-zero tension on tensor branch.

Characteristic properties of E-string theory

Consider only k = 1 case (single M5-brane).

- Tensor branch: single massless tensor multiplet + tensionfull E-strings.
- Higgs branch: 1-instanton moduli space of E_8 on \mathbb{R}^4 .

In this short talk, let's forget about the string theory construction of E-string theory. Instead, I will explain some consequences of these properties of E-string theory, by just using field theoretical method.



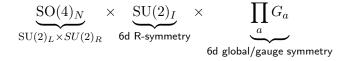
3 1-instanton moduli space as Higgs branch

Aim of this chapter

- Goal: understand the properties of E-string on the tensor branch.
- Consider the worldsheet 2d $\mathcal{N}=(0,4)$ theory on the E-string, and compute the chiral anomaly of the 2d theory.

Strings in 6d $\mathcal{N}{=}(1,0)$ theory

- Tensor branch: tensor/vector/hyper multiplets.
- Put a probe string of charge $\{Q_i\}_{i=1}^{N_T}$ under 2-form fields B_i^+ .
- Global symmetry on the worldsheet theory:



- 2d $\mathcal{N}=(0,4)$ SUSY: $(\mathbf{1},\mathbf{2},\mathbf{2})_{-}$ under $\mathrm{SU}(2)_{L} \times \mathrm{SU}(2)_{R} \times \mathrm{SU}(2)_{I}$.
- Chiral anomaly on the worldsheet

$$I_4 = \alpha c_2(L) + \beta c_2(R) + \gamma c_2(I) + \delta p_1(T) + \sum_a \frac{\kappa_a}{4} \operatorname{Tr} F_a^2.$$

10 / 31

Coupling of string to 2-form fields

• Without the probe string:

$$L_{GS} = \int \eta^{ij} B_i \wedge I_j$$
 (Green-Schwarz coupling)
 $dH_i = I_i$ (modified Bianchi identity)

- H_i : 3-form field strength of the B_i
- I_i : some 4-form. E.g. for G Yang-Mills theory in 6d:

$$I^{GS} = \frac{1}{4} \operatorname{Tr} F_G^2 + \frac{h_G^{\vee}}{12} p_1(T) + h_G^{\vee} c_2(I).$$

• η^{ij} : integer, symmetric matrix.

Dirac paring of strings: $\langle Q, Q' \rangle = \eta^{ij} Q_i Q'_j$.

Coupling of string to 2-form fields

• With the probe string:

$$L_{\mathsf{kin}} + L_{\mathsf{GS}} = \int \eta^{ij} dB_i \wedge * dB_j + \eta^{ij} B_i \wedge I_j$$

 $dH_i = I_i + Q_i \prod_{j=2}^5 \delta(x_j)$

- The probe string: change the gauge trsfm of B_i .
- New term in gauge variation of $L_{\rm kin} + L_{\rm GS}$. Localized on the string. \rightarrow Chiral anomaly of the string.

Anomaly formula of strings

• Probe string with charge vector $\{Q_i\}_{i=1}^{N_T}$ has the chiral anomaly [HS,Tachikawa; Kim,Kim,Park; del Zotto,Lockhart:16]

$$I_4 = \frac{\eta^{ij}Q_iQ_j}{2}\chi(N) + \eta^{ij}Q_iI_j.$$

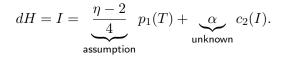
Decomposition: $p_1(T_{6d}) \to p_1(T_{2d}) + p_1(N)$. Useful identities: $\chi(N) = c_2(L) - c_2(R), p_1(N) = -2c_2(L) - 2c_2(R)$.

• What we need:

- Dirac paring matrix η^{ij} .
- Green-Schwarz coupling in 6d I_j .
- charge vector $\{Q_i\}_{i=1}^{N_T}$ of the string.

Anomaly of string in "smallest" 6d $\mathcal{N}{=}(1,0)$ theory

- Consider the 6d $\mathcal{N}=(1,0)$ theory with one tensor multiplet, no gauge fields, and Dirac paring $\eta = 1$.
- We don't know Green-Schwarz term, but assume



• Then, anomaly of a single string:

$$I_4^{\text{string}} = \frac{1}{2}(c_2(L) - c_2(R)) - \frac{1}{4}(p_1(T) - 2c_2(L) - 2c_2(R)) + \alpha c_2(I).$$

= $c_2(L) + \alpha c_2(I) - \frac{1}{4}p_1(T).$

14 / 31

Anomaly of string in "smallest" 6d $\mathcal{N}{=}(1,0)$ theory

• On the string worldsheet, we have at least $\mathcal{N}{=}(0,4)$ hypermultiplet. Center-of-mass mode of the string. Its anomaly is

$$I_4^{\text{zero modes}} = c_2(L) + c_2(I) + \frac{1}{12}p_1(T).$$

• The mismatch of the anomaly:

$$\Delta I_4 = (\alpha - 1)c_2(I) - \frac{1}{3}p_1(T).$$

- The simplest way to cure this mismatch: take $\alpha = 1$ and put additional chiral CFT with c = 8 on the non-supersymmetric side.
- Assuming further that the partition function of the string exists, this CFT must be the E_8 current algebra of level one. The E_8 symmetry arises automatically! [HS,Tachikawa:16]

Anomaly of E-strings

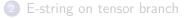
• Anomaly of charge-Q string in "smallest" $\mathcal{N}{=}(1,0)$ theory.

(i.e. E-string theory)

$$I_4(Q) = \frac{Q^2 + Q}{2}c_2(L) - \frac{Q^2 - Q}{2}c_2(R) - \frac{Q}{4}\operatorname{Tr} F_{E_8}^2 - \frac{Q}{4}p_1(T) + Qc_2(I).$$

Check from string theory setup.[Kim, Kim, Lee, Park, Vafa:14]
 Q D2s suspended b/w an NS5 and (O8⁻ + 8 D8s).

	vector $(A_{\mu},\lambda_{+}^{\dotlpha A})$	hyper $(\phi_{lpha \dot{lpha}}, \lambda_{-}^{lpha A})$	Fermi (Ψ^l_+)
O(Q)	antisymmetric	symmetric	fund
$\mathrm{SU}(2)_L$	-	fund	-
$\mathrm{SU}(2)_R$	fund	-	-
$\mathrm{SU}(2)_I$	fund	fund	-
SO(16)	-	-	fund



3 1-instanton moduli space as Higgs branch

Aim of this chapter

- Goal: derive some information about E-string theory from its Higgs branch, i.e. 1-instanton moduli space of *E*₈.
- Compute chiral anomaly *I*₈ of E-string theory by anomaly matching on Higgs branch. [HS,Tachikawa,Zafrir:17]

Anomaly matching on Higgs branch

• Ansatz of anomaly at the origin:

$$I_8^{\text{origin}} = \alpha c_2(R)^2 + \beta c_2(R)p_1(T) + \gamma p_1(T)^2 + \delta p_2(T) + \frac{1}{4} \operatorname{Tr} F_{E_8}^2 \left(\frac{\kappa}{4} \operatorname{Tr} F_{E_8}^2 + \lambda c_2(R) + \mu p_1(T)\right).$$

• Global symmetry breaking at generic point:

$$\mathrm{SU}(2)_R \times \underbrace{E_8}_{\mathrm{SU}(2)_X \times E_7} \to \mathrm{SU}(2)_D \times E_7.$$

• Then, chiral anomaly at generic point becomes

$$I_8^{\text{generic}} = (\alpha + \kappa + \lambda)c_2(D)^2 + (\beta + \mu)c_2(D)p_1(T) + \gamma p_1(T)^2 + \delta p_2(T) + \frac{1}{4}\operatorname{Tr} F_{E_7}^2 \left(\frac{\kappa}{4}\operatorname{Tr} F_{E_7}^2 + (2\kappa + \lambda)c_2(D) + \mu p_1(T)\right).$$

19/31

Anomaly matching on Higgs branch

• Spectrum at a generic point:

half-hypermultiplets in a rep $(\mathbf{2}, \mathbf{1}) + (\mathbf{1}, \mathbf{56})$ under $\mathrm{SU}(2)_X \times E_7$.

• Chiral anomaly is

$$I_8^{\text{hyper}} = \frac{1}{24} c_2(D)^2 + \frac{1}{48} c_2(D) p_1(T) + \frac{203}{5760} p_1(T)^2 - \frac{29}{1440} p_2(T) + \frac{1}{32} \left(\text{Tr} F_{E_7}^2 \right)^2 + \frac{1}{16} \text{Tr} F_{E_7}^2 p_1(T).$$

• Solving
$$I_8^{\text{generic}} = I_8^{\text{hyper}}$$
, we have
 $\alpha = \frac{13}{24}, \ \beta = -\frac{11}{48}, \ \gamma = \frac{203}{5760}, \ \delta = -\frac{29}{1440}, \ \kappa = \frac{1}{2}, \ \lambda = -1, \ \mu = \frac{1}{4}.$
Chiral anomaly of E-string theory!

20 / 31

Generalization

- Assumption: Higgs branch is the 1-instanton moduli space M_G .
- Can we reconstruct the chiral anomaly at the origin?
- Yes. But only for restricted Gs!

Strategy

- Write the most general form of the anomaly at the origin $I_8^{\rm origin}$.
- Decompose to I_8^{generic} by the symmetry breaking

$$\mathrm{SU}(2)_R \times \underbrace{G}_{\mathrm{SU}(2)_X \times G'} \to \mathrm{SU}(2)_D \times G'.$$

<u>Note</u>: $M_G \simeq \mathcal{O}_{\min}(G) = G_{\mathbb{C}} \cdot (E_{\theta})^* \subset \mathfrak{g}_{\mathbb{C}}^*$: minimal nilpotent orbit of G.[Kronheimer:90]

• Spectrum at a generic point:

half-hypermultiplets in a rep $(\mathbf{2}, \mathbf{1}) + (\mathbf{1}, \mathbf{R}')$ under $\mathrm{SU}(2)_X \times G'$.

 \mathbf{R}' is determined by $\mathfrak{g} = \mathfrak{g}' \oplus \mathfrak{su}(2)_X \oplus R$ and $R = \mathbf{2}_X \otimes R'$.

• Solve the equation $I_8^{\text{generic}} = I_8^{\text{hyper}}$.

Group theoretical data

G	h^{\vee}	G'	R'
SU(n)	n	$\mathrm{U}(1)_F \times \mathrm{SU}(n-2)$	$(\mathbf{n-2})_{-n} \oplus (\overline{\mathbf{n-2}})_{+n}$
SO(n)	n-2	$\mathrm{SU}(2)_F \times \mathrm{SO}(n-4)$	${f 2}_F \otimes ({f n-4})$
$\operatorname{Sp}(n)$	n+1	$\operatorname{Sp}(n-1)$	2n-2
E_6	12	SU(6)	20
E_7	18	SO(12)	32
E_8	30	E_7	56
F_4	9	$\operatorname{Sp}(3)$	14'
G_2	4	$\mathrm{SU}(2)_F$	4

Table: The data. For SU(n), $U(1)_F$ is normalized so that n splits as $(n-2)_{-2}$ and 2_{n-2} . For SO(n), n is assumed to be ≥ 5 .

23 / 31

Results

Anomaly polynomials on the Higgs branch can consistently be matched for

SU(2), SU(3), Sp(n), E_8 , and G_2 .

- $\bullet~{\rm SU}(2):$ cannot completely determine the anomaly at the origin.
- SU(3): we don't know any examples.
- $\operatorname{Sp}(n)$: *n* free hypermultiplets gauged by \mathbb{Z}_2 .
- E_8 : rank-1 E-string theory.
- G_2 : does not pass the anomaly matching test of the global anomaly.

More generalization

- Does the 4d $\mathcal{N}=2$ theory with Higgs branch M_G exist?
- Does the 2d $\mathcal{N}=(0,4)$ theory with Higgs branch M_G exist?

4d $\mathcal{N}{=}2$ theories

• Ansatz of anomaly at the origin:

$$I_6^{\text{origin}} = -\frac{d_H}{3}c_1(R)^3 + \frac{d_H}{12}p_1(T)c_1(R) - n_v c_1(R)c_2(R) + \frac{k_G}{4}c_1(R)\operatorname{Tr} F_G^2$$

• Anomaly can be matched only for exceptional series (+Sp(n)).

 ${\rm SU}(2), \quad {\rm SU}(3), \quad {\rm SO}(8), \quad {\rm Sp}(n), \quad E_{6,7,8}, \quad F_4, \quad \text{and} \quad G_2.$

• Reproduce the list from conformal bootstrap. [Beem,Lemos,Liendo,Peelaers,Rastelli,van Rees:13]

Results for 4d $\mathcal{N}{=}2$ theories

G	k	n_v	n_h	a	c
SU(2)	x+1	x	x + 1	$\frac{6x+1}{24}$	$\frac{3x+1}{12}$
SU(3)	3	2	4	$\frac{7}{12}$	$\frac{\overline{2}}{\overline{3}}$
SO(8)	4	3	8	$\frac{2\overline{3}}{24}$	$\frac{12}{\frac{2}{3}}$
$\operatorname{Sp}(n)$	1	0	n	$\frac{\frac{12}{23}}{\frac{24}{24}}$	$\frac{\check{n}}{12}$
E_6	6	5	16	$\frac{41}{24}$	$\frac{13}{6}$
E_7	8	7	24	$\frac{59}{24}$	$\frac{19}{6}$
$ \begin{array}{c} E_6\\ E_7\\ E_8 \end{array} $	12	11	40	$\frac{\overline{95}}{24}$	$\frac{31}{6}$
F_4	5	4	12	$\frac{4}{3}$	$\frac{5}{3}$
$\begin{array}{c} F_4\\ G_2 \end{array}$	$\frac{10}{3}$	$\frac{7}{3}$	$\frac{16}{3}$	$\frac{17}{24}$	$\frac{123}{69} = \frac{69}{631} = \frac{535}{6}$

Table: The cases compatible with conformal symmetry in four dimensions. For SU(2) the parameter x can not be fixed by our method. Those except F_4 and G_2 are known to exist. The F_4 case suffers from the mismatch of the global anomaly.

2d $\mathcal{N}{=}(0,4)$ theories

- Assume no Fermi multiplets on the Higgs branch.
- Ansatz of full anomaly:

$$I_4^{\mathsf{full}} = -n_v c_2(R) + d_H c_2(I) + \frac{d_H}{12} p_1(T) + \frac{k_G}{4} \operatorname{Tr}(F_G^2).$$

Anomaly can be matched only for

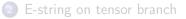
SU(2), SU(3), SO(8), Sp(n), $E_{6,7,8}$, F_4 , and G_2 .

- Sp(n): n free hypermultiplets gauged by \mathbb{Z}_2 .
- SU(3), SO(8), $E_{6,7,8}$, F_4 : a single string in 6d minimal gauge theories.
- SU(2): cannot completely determine the anomalies.
- G_2 : we don't know any examples.

Results for 2d $\mathcal{N}=(0,4)$ theories

G	n	n_v	d_H	k_G
SU(2)		x-1	1	x
$\operatorname{Sp}(n)$		0	n	1
SU(3)	3	2	2	3
SO(8)	4	3	5	4
F_4	5	4	8	5
E_6	6	5	11	6
E_7	8	7	17	8
E_8	12	11	29	12
G_2		$\frac{7}{3}$	3	$\frac{10}{3}$

Table: The cases without Fermi multiplets in two dimensions. We explicitly show the value of self-Dirac-Zwazinger paring as n when the theory is realized on a single string in minimal 6d $\mathcal{N}=(1,0)$ theories.



3 1-instanton moduli space as Higgs branch

Summary

- Anomaly formula of strings in 6d $\mathcal{N}{=}(1,0)$ theories.
- Compute anomaly of E-strings.
- Anomaly matching on Higgs branch for E-string theory.
- 6d $\mathcal{N}=(1,0)$ theory whose Higgs branch is M_G .

Thank you very much for attention!