On the Flux Vacua in F-theory Compactifications

Hajime Otsuka (Waseda U.)

arXiv:1706.09417 with Y. Honma (National Tsing-Hua U.)

2017/7/19@KEK, Exceptional Groups as Symmetries of Nature'17

Outline

O Introduction

O Flux compactification in type IIB string

O Flux compactification in F-theory

- i) F-theory
- ii) Brane superpotential
- iii) Flux compactification

O Conclusion

Introduction

The standard model of particle physics

Gauge group: $SU(3) \times SU(2) \times U(1)$ Matter content:

	spin1/2	$SU(3)_c, SU(2)_L, U(1)_Y$			
quarks	$Q^i = (u_L, d_L)^i$	(3, 2, 1/6)			
$(\times 3 \text{ families})$	u_{P}^{i}	$(\bar{3}, 2, -2/3)$		spin1	$SU(3)_c, SU(2)_L, U(1)_Y$
(· · ·)	d_{R}^{i}	$(\bar{3}, 1, 1/3)$	gluon	g	(8, 1, 0)
leptons	$L^i = (\nu, e_L)^i$	(1, 2, -1/2)	W bosons	$W^{\pm} W^0$	(1, 3, 0)
$(\times 3 \text{ families})$	e_B^i	(1, 1, 1)	B boson	B^0	(1, 1, 0)
	spin0				
Higgs	$H = (H^+, H^0)$	(1, 2, -1/2)			

Problem:

No gravitational interaction in the standard model

String theory

A good candidate for the unified theory of the gauge and gravitational interactions

Problem:

No gravitational interaction in the standard model

String theory

A good candidate for the unified theory of the gauge and gravitational interactions

Graviton: g_{MN} , B_{MN} , ϕ

Ramond-Ramond field: C_{p+1} Gauge fields: A_{μ}

5

(Perturbative) superstring theory requires the extra 6 dimension.

Extra 6D space should be compactified to be consistent with the observational and experimental data.

→ Stabilization of the extra dimensional space <u>Moduli stabilization</u>

①Closed string moduli

 $\langle \text{Im}\tau \rangle = g_s^{-1}$ i) Dilaton (τ) $g_{\rm s}$: string coupling ii) Kähler moduli (T) Size of the internal cycles iii) Complex structure moduli (U)Shape

<u>Moduli (axions) are ubiquitous in string compactifications</u> \rightarrow Inflation, SUSY breaking, Moduli problem

Scalar field : Φ_a (a = p + 1, ..., 9)

Scalar field : Φ_a (a = p + 1, ..., 9)

Closed string moduli
 Open string moduli

In this talk, we consider the stabilization of both the open and closed string moduli based on F-theory ("non-perturbative" description of IIB string).

Outline

OIntroduction

O Flux compactification in type IIB string

O Flux compactification in F-theory

- i) F-theory
- ii) Brane superpotential
- iii) Flux compactification

O Conclusion

Flux compactification (Type IIB string on CY orientifold)

Low-energy effective theory based on 4D N=1 SUGRA

Kähler potential:

$$K = -\ln(i\int \Omega \wedge \overline{\Omega}) - \ln(-i(\tau - \overline{\tau})) - 2\ln(V)$$
$$\Omega(U) : \text{hol. (3,0) form of CY}$$

V : CY Volume

Flux induced potential=

"Gukov-Vafa-Witten (GVW) superpotential" [Gukov-Vafa-Witten '99]

$$W(\tau, U) = \int_{CY} G_3(\tau) \wedge \Omega(U)$$
$$G_3 = F_3 - \tau H_3 \quad : \text{three-form}$$

Low-energy effective action based on 4D N=1 SUGRA

$$K = -\ln(i\int \Omega \wedge \overline{\Omega}) - \ln(-i(\tau - \overline{\tau})) - 2\ln(V(T))$$
$$W(\tau, U) = \int_{CY} G_3(\tau) \wedge \Omega(U)$$

$$V = e^{K} \left(\sum_{I,J=\tau,U} K^{I\bar{J}} D_{I} W D_{\bar{J}} W + \underbrace{(K^{T\bar{T}} K_{T} K_{\bar{T}} - 3)}_{= \mathbf{0}} |W|^{2} \right) \qquad D_{I} = \partial_{I} + K_{I}$$

No-scale structure $K_{I} = \partial_{I} K$

Dilaton and complex structure moduli are stabilized at

$$D_{\tau}W = D_UW = 0$$

Low-energy effective action based on 4D N=1 SUGRA

$$K = -\ln(i\int \Omega \wedge \overline{\Omega}) - \ln(-i(\tau - \overline{\tau})) - 2\ln(V(T))$$
$$W(\tau, U) = \int_{CY} G_3(\tau) \wedge \Omega(U)$$

$$V = e^{K} \left(\sum_{I,J=\tau,U} K^{I\bar{J}} D_{I} W D_{\bar{J}} W + \underbrace{(K^{T\bar{T}} K_{T} K_{\bar{T}} - 3)|W|^{2}}_{\text{No-scale structure}} \right) \qquad D_{I} = \partial_{I} + K_{I}$$
$$K_{I} = \partial_{I} K$$

Dilaton and complex structure moduli are stabilized at

$$D_{\tau}W = D_UW = 0$$

Dilaton and complex structure moduli are stabilized at

$$D_{\tau}W = D_{U}W = 0$$
$$W(\tau, z) = \int_{CY} G_{3}(\tau) \wedge \Omega(U)$$

 G_3 fluxes are constrained as the imaginary self-dual fluxes:

$$G_3 = i *_6 G_3$$

Tadpole condition for C_4 :

$$G_3 = F_3 - \tau H_3$$
 : three-form

$$\int_{CY} H_3 \wedge F_3 + Q_{D3} = 0$$

Dilaton and complex structure moduli are stabilized at

$$D_{\tau}W = D_{U}W = 0$$
$$W(\tau, z) = \int_{CY} G_{3}(\tau) \wedge \Omega(U)$$

 G_3 fluxes are constrained as the imaginary self-dual fluxes:

$$G_3 = i *_6 G_3$$

Moduli stabilization in type IIB string

The remaining Kähler moduli can be stabilized by the nonperturbative effects.

$$W = \langle W_{\rm flux} \rangle + Ae^{-aT}$$

 $\begin{array}{l} {\color{black} OKKLT \ scenario \ (< W_{flux} > \ll 1 \) & [Kachru-Kallosh-Linde-Trivedi '03] \\ {\color{black} OLARGE \ volume \ scenario \ (< W_{flux} > \sim 0(1) \) \\ [Balasubramanian-Berglund-Conlon-Quevedo '05] \end{array} } \end{array}$

De Sitter vacua can be realized by introducing the anti D3-branes.

ORadiative moduli stabilization scenario

[Kobayashi-Omoto-Otsuka-Tatsuishi '17] ¹⁷

$$W(\tau, U) = \int_{CY} G_3(\tau) \wedge \Omega(U) = \sum_{\alpha} (N_F^{\alpha} - \tau N_H^{\alpha}) \Pi_{\alpha}$$

Period vector:

S. Hosono, A. Klemm, S. Theisen and S. T. Yau ('95)

$$\Pi_{\alpha} = \int_{\gamma^{\alpha}} \Omega = \begin{pmatrix} 1 \\ U^{i} \\ \frac{1}{3!} \kappa_{ijk} U^{i} U^{j} U^{k} + \kappa_{i} U^{i} + \kappa_{0} - \sum_{\beta} n_{\beta}^{0} (\frac{2}{(2\pi i)^{3}} \mathrm{Li}_{3}(q^{\beta}) - \frac{d_{i}}{(2\pi i)^{2}} U^{i} \mathrm{Li}_{2}(q^{\beta})) \\ -\frac{1}{2} \kappa_{ijk} U^{j} U^{k} - \kappa_{ij} U^{j} + \kappa_{i} - \frac{1}{(2\pi i)^{2}} \sum_{\beta} n_{\beta}^{0} d_{i} \mathrm{Li}_{2}(q^{\beta}) \end{pmatrix}$$

$$q^{\beta_i} = e^{2\pi i d_i U^i}$$

Geometric corrections for U

 \rightarrow Non-trivial axion potential

Kobayashi-Oikawa-Otsuka '15 Phys.Rev. D**93** (2016) no.8, 083508.

$$K(\tau, U) = -\ln(i\int \Omega \wedge \overline{\Omega}) - \ln(-i(\tau - \overline{\tau}))$$
$$W(\tau, U) = \int_{CY} G_3(\tau) \wedge \Omega(U) = \sum_{\alpha} (N_F^{\alpha} - \tau N_H^{\alpha}) \Pi_{\alpha}$$

 $(h^{1,2}-2)$ complex structure moduli and dilaton: \mathcal{Z} Other complex structure moduli: U_1, U_2

At the leading level, we consider the following ansatz:

Hebecker-Mangat-Rompineve-Witkowski '15

 $K(\tau, U) = -\ln[f_0(\operatorname{Re} z, \operatorname{Re} U_1, \operatorname{Re} U_2)]$

 $W(\tau, U) = g_0(z) + g_1(z)(U_2 + NU_1)$

N : Integer (flux)

 f_0 : Kähler potential at the LO

 $g_{0,1}(z)$: flux-induced potential at the LO

When we redefine the moduli, $\Psi \equiv U_2 + NU_1$, $\Phi \equiv U_2$,

$$K(S, U) = -\ln \left[f_0 \left(\operatorname{Re} z, \left(\operatorname{Re} \Psi - \operatorname{Re} \Phi \right) / N, \operatorname{Re} \Phi \right) \right],$$

$$W(S, U) = g_0(z) + g_1(z) \Psi,$$

 $\operatorname{Re}\Phi, z, \Psi$ would be stabilized at supersymmetric minimum,

$$egin{aligned} D_I W &= 0 & ext{with} & I &= \Psi, z & D_I W &= W_I + K_I W \ K_{\Phi} &= 0 & W_I &= \partial W / \partial \Phi^I \ K_I &= \partial K / \partial \Phi^I & K_I &= \partial K / \partial \Phi^I \end{aligned}$$

O $Im\,\Phi\,$ remains massless at this stage. O Geometric corrections generate its potential.

Period vector : S. Hosono, A. Klemm, S. Theisen and S. T. Yau ('95) $\Pi_{\alpha} = \begin{pmatrix} 1 \\ U^{i} \\ \frac{1}{3!} \kappa_{ijk} U^{i} U^{j} U^{k} + \kappa_{i} U^{i} + \kappa_{0} - \sum_{\beta} n_{\beta}^{0} (\frac{2}{(2\pi i)^{3}} \text{Li}_{3}(q^{\beta}) - \frac{d_{i}}{(2\pi i)^{2}} U^{i} \text{Li}_{2}(q^{\beta})) \\ -\frac{1}{2} \kappa_{ijk} U^{j} U^{k} - \kappa_{ij} U^{j} + \kappa_{i} - \frac{1}{(2\pi i)^{2}} \sum_{\beta} n_{\beta}^{0} d_{i} \text{Li}_{2}(q^{\beta}) \end{pmatrix}$ It induces the geometric corrections $q^{\beta_{i}} = e^{2\pi i d_{i} U^{i}}$

It induces the geometric corrections to the Kähler potential and superpotential:

$$\begin{split} \Delta K &\simeq -\frac{f_1^{(1)}}{\langle f_0 \rangle} \left(\frac{2}{\pi} + \frac{\Psi + \bar{\Psi} - \Phi - \bar{\Phi}}{N} \right) \cos \left(-i\pi \frac{\Psi - \bar{\Psi} - \Phi + \bar{\Phi}}{N} \right) e^{-\pi \frac{\Psi + \bar{\Psi} - \Phi - \bar{\Phi}}{N}}, \\ \Delta W &\simeq \left(g_2^{(1)} + \frac{g_3^{(1)}}{N} (\Psi - \Phi) \right) e^{-2\pi \frac{\Psi - \Phi}{N}}, \qquad \qquad \Psi \equiv U_2 + NU_1, \end{split}$$

O One can extract the potential of $\,{
m Im}\,\Phi$

 $\Phi \equiv U_2,$

Inflaton potential depends on the Kähler moduli stabilization.

 ϕ : Canonically normalized axion

$$V_{\text{inf}} \simeq \Lambda_1 \left(1 - \cos \frac{\phi}{M_1} \right) + \Lambda_2 \phi \sin \frac{\phi}{M_1}$$

 $M_1, M_3 \simeq N/2\pi$

2 LARGE volume scenario

$$V_{\text{inf}} \simeq \Lambda_4 \phi^2 + \Lambda_5 \phi \sin\left(\frac{\phi}{M_3}\right) + \Lambda_6 \left(1 - \cos\left(\frac{\phi}{M_3}\right)\right)$$

Planck data

Kobayashi-Oikawa-Otsuka '15

Phys.Rev. D93 (2016) no.8, 083508.

2 LARGE Volume Scenario

(Mixture of polynomial functions and sinusoidal functions)

Outline

OIntroduction

O Flux compactification in type IIB string

O Flux compactification in F-theory

- i) F-theory
- ii) Brane superpotential
- iii) Flux compactification

O Conclusion

Type IIB action in Einstein frame(with other fields set to 0):

$$L_{IIB} = \sqrt{g} \left(R - \frac{|\partial \tau|^2}{2(\operatorname{Im} \tau)^2} \right)$$

where $\tau = C_0 + ie^{-\phi}$, $(\langle Im\tau \rangle = g_s^{-1}, g_s: string coupling)$ This action is invariant under SL(2, Z):

$$au
ightarrow au + 1$$
 , $au
ightarrow -1/ au$

Type IIB action in Einstein frame(with other fields set to 0):

$$L_{IIB} = \sqrt{g} \left(R - \frac{|\partial \tau|^2}{2(\operatorname{Im} \tau)^2} \right)$$

where $\tau = C_0 + ie^{-\phi}$, $(\langle Im\tau \rangle = g_s^{-1}, g_s: string coupling)$ This action is invariant under SL(2, Z):

$$au
ightarrow au + 1$$
 , $au
ightarrow -1/ au$

Interpret τ as complex structure of auxiliary torus T^2 (Vafa '96)

F-theory is defined in "12"D spacetime

String coupling can be taken as $g_s = \langle \text{Im } \tau \rangle^{-1} > 1$. F-theory = "non-perturbative" description of type IIB

D7-brane looks like "cosmic string" in ambient space

(Greene, Shapere, Vafa, Yau, '89)

Metric:

$$ds_{10}^{2} = -dt^{2} + \sum_{i=1}^{7} dx_{i}^{2} + H(u,\bar{u})dud\bar{u}$$

r

D7-brane has magnetic charge under C_0

$$1 = \oint_{u=u_0} dC_0 = C_0 \left(u e^{2\pi i} \right) - C_0(u)$$

D7-brane looks like "cosmic string" in ambient space

(Greene, Shapere, Vafa, Yau, '89)

Metric:

$$ds_{10}^{2} = -dt^{2} + \sum_{i=1}^{7} dx_{i}^{2} + H(u,\bar{u})dud\bar{u}$$

$$\underline{D7}$$

u₀ D7-brane

D7-brane has magnetic charge under C_0

$$1 = \oint_{u=u_0} dC_0 = C_0 (ue^{2\pi i}) - C_0(u)$$

 $\text{Re}\tau = C_0$

Near D7-brane :
$$\tau \simeq \frac{1}{2\pi i} \ln(u - u_0)$$

D7-brane location : $\tau(u_0) \rightarrow i\infty$ (T^2 degenerate at $u = u_0$.)

D7-brane looks like "cosmic string" in ambient space

(Greene, Shapere, Vafa, Yau, '89)

Metric: u_0 $ds_{10}^{2} = -dt^{2} + \sum_{i=1}^{2} dx_{i}^{2} + H(u,\bar{u})dud\bar{u}$ T. **D7** D7-brane has magnetic charge under C_0 D7-brane $1 = \oint_{u=u} dC_0 = C_0 (ue^{2\pi i}) - C_0(u)$ $\text{Re}\tau = C_0$ Near D7-brane : $\tau \simeq \frac{1}{2\pi i} \ln(u - u_0)$ $\tau(u)$ D7-brane location : $\tau(u_0) \rightarrow i\infty$ $(T^2 \text{ degenerate at } u = u_0.)$ 6D manifold 8D CY manifold [1, 0]D7 brane \rightarrow [p, q] 7-branes

$$y^2 = x^3 + xf + g$$
 $\Delta = 4f^3 + 27g^2$

$\operatorname{ord}(f)$	$\operatorname{ord}(g)$	$\operatorname{ord}(\Delta)$	fiber type	singularity type
≥ 0	≥ 0	0	smooth	none
0	0	n	I_n	A_{n-1}
≥ 1	1	2	II	none
1	≥ 2	3	III	A_1
≥ 2	2	4	IV	A_2
2	≥ 3	n+6	I_n^*	D_{n+4}
≥ 2	3	n+6	I_n^*	D_{n+4}
≥ 3	4	8	IV^*	E_6
3	≥ 5	9	III^*	E_7
≥ 4	5	10	II^*	E_8

M. Bershadsky et al., arXiv:9605200.

F-theory is defined in "12"D spacetime

17-branes exist at the singular limit of torus

②String coupling > 1
 ("Non-perturbative" description of type IIB superstring)

③ Both open and closed string moduli are involved.

Outline

OIntroduction

O Flux compactification in type IIB string

O Flux compactification in F-theory

i) F-theory

- ii) Brane superpotential
- iii) Flux compactification

O Conclusion

Brane Superpotential:

$$W_{\text{brane}} = \widehat{N_b} \int_{\Gamma_b, \partial \Gamma_b = C} \Omega$$

For branes wrapping on the whole CY, open string partition function is given by holomorphic Chern-Simons theory [Witten '92]:

$$W = \int_{CY} \Omega \wedge \operatorname{Tr} \left[A \wedge \overline{\partial} A + \frac{2}{3} A \wedge A \wedge A \right]$$

Lower dimensional branes wrapping on holomorphic submanifold C can be obtained by dimensional reduction $A \rightarrow \phi$ [Aganagic-Vafa '00]

Γ

Brane superpotential (Open mirror symmetry)

Mirror Quintic CY3 (degree 5 hypersurface in CP^4)

$$P(\psi) = \sum_{i=1}^{5} y_i^5 - 5\psi y_1 y_2 y_3 y_4 y_5 = 0$$

Let us consider holomorphic 2-cycles where the brane wraps[Morrison-Walcher '07] Mirror Quintic CY3

$$C_{\pm}: y_1 + y_2 = 0, y_3 + y_4 = 0, y_5^2 \pm \sqrt{5\psi}y_1y_3 = 0$$

No moduli dependence at fixed C_{\pm} !

Brane deformation : $\partial\Gamma$ into (geometrically non-holomorphic) curve surrounded by a holomorphic divisor

 $W = \int_{\Gamma} \Omega$

Brane superpotential (Open mirror symmetry)

Mirror Quintic CY3 (degree 5 hypersurface in CP^4)

$$P(\psi) = \sum_{i=1}^{5} y_i^5 - 5\psi y_1 y_2 y_3 y_4 y_5 = 0$$

Continuous deformation of C_{\pm} : (Hol. divisor defined by a degree 4 polynomial) $Q(\phi) = y_5^4 - 5\phi y_1 y_2 y_3 y_4 = 0$

Brane deformation

Brane superpotential:

$$W_{\text{brane}}(\psi,\phi) = \int_{\Gamma} \Omega(\psi,\phi) = \int_{\widehat{\Gamma},\partial\widehat{\Gamma}=Q(\phi)} F \wedge \Omega$$

which is related to D7-brane with magnetic flux F

[Grimm-Ha-Klemm-Klevers '09]

CY3+brane \rightarrow CY4 without brane

OIn the toric language, the previous system corresponds to A-model : Quintic CY3 over CP^1 [Berglund-Mayr '98,

Grimm-Ha-Klemm-Klevers '09, Jockers-Mayr-Walcher '09]

- $l_1 = (-4,0,1,1,1,1,-1,-1,-1,0)$ $l_2 = (-1,1,0,0,0,0,1,-1,0)$ $l_3 = (0,-2,0,0,0,0,0,1,1)$

 $l_1 + l_2$: Quintic CY3 l_2 : brane deformation l_3 : base CP^1

B-model : Elliptically fibered CY4

[Berglund-Mayr '98]

F-theory compactification on CY4

Flux compactification in F-theory on CY4

OGVW superpotential + brane superpotential in type IIB = G_4 -flux superpotential in F-theory [Grimm-Ha-Klemm-Klevers '09,...]

$$W = \int_{CY4} G_4 \wedge \Omega$$

OImaginary self-dual three-form fluxes in type IIB =correspond to self-dual G_4 -fluxes [Gukov-Vafa-Witten '99] $G_4 = * G_4$

O Tadpole conditions

$$\frac{\chi}{24} = n_{D3} + \frac{1}{2} \int_{CY4} G_4 \wedge G_4$$

 χ : Euler number of CY4 n_{D3} : # of D3

Flux compactification in F-theory on CY4

OThe orientifold limit of F-theory

[Dasgupta-Rajesh-Sethi '99, Denef-Douglas-Florea-Grassi-Kachru '05]

OK3 × K3 background [Berglund-Mayr '13]

OElliptically fibered CY4 in the large complex structure limit

Outline

OIntroduction

O Flux compactification in type IIB string

O Flux compactification in F-theory

- i) F-theory
- ii) Brane superpotential
- iii) Flux compactification

O Conclusion

F-theory on elliptically fibered CY4 \rightarrow 4D N=1 supergravity

In 4D N=1 SUGRA

Kähler potential: $K = -\ln \int_{CY4} \Omega \wedge \overline{\Omega} - 2\ln V$ $= -\ln(\Pi^{i} \eta_{ij} \overline{\Pi}^{j}) - 2\ln V$ Superpotential: $W = \int_{CY4} G_4 \wedge \Omega = n^{i} \eta_{ij} \Pi^{j}$

- $\Pi_i = \int_{\gamma^i} \Omega : \text{Fourfold periods}$
 - γ^i : Homology basis of $H_4^H(CY4, \mathbf{Z})$
 - η_{ij} : Topological intersection matrix
 - n^i : Quantized four-form fluxes
 - V: Volume of 3D Kähler base

F-theory compactification on elliptically fibered CY4

- z: Complex structure modulus
- S: Dilaton
- z_1 : Open string modulus
- n_i : Quantized fluxes

$$\begin{aligned} \Pi_1 &= 1, \ \Pi_2 = z, \ \Pi_3 = -z_1, \ \Pi_4 = S, \\ \Pi_5 &= 5Sz, \ \Pi_6 = \frac{5}{2}z^2, \ \Pi_7 = 2z_1^2, \ \Pi_8 = -\frac{5}{2}Sz^2 - \frac{5}{3}z^3, \\ \Pi_9 &= -\frac{2}{3}z_1^3, \ \Pi_{10} = -\frac{5}{6}z^3, \ \Pi_{11} = \frac{5}{6}Sz^3 + \frac{5}{12}z^4 - \frac{1}{6}z_1^4, \end{aligned}$$

Kähler potential:

$$K = -\ln\left[-i(S-\overline{S})\right] - \ln\left[\frac{5i}{6}(z-\overline{z})^3 + \frac{i}{S-\overline{S}}\left(-\frac{1}{6}(z_1-\overline{z_1})^4 + \frac{5}{12}(z-\overline{z})^4\right)\right] - 2\ln\mathcal{V}$$

NLO in g_s correction

Superpotential:

$$W = n_{11} + n_{10}S + n_8z + n_6Sz + \frac{5}{2}\left(\frac{n_5}{5} + \frac{2n_6}{5}\right)z^2 - \frac{5n_4}{6}z^3 - n_2\left(\frac{5}{2}Sz^2 + \frac{5}{3}z^3\right) - n_9z_1 - \frac{n_7}{2}z_1^2$$
$$-\frac{2n_3}{3}z_1^3 + n_1\left(\frac{5}{6}Sz^3 + \frac{5}{12}z^4 - \frac{1}{6}z_1^4\right)$$

F-theory compactification on elliptically fibered CY4

- z: Complex structure modulus
- S: Dilaton
- z_1 : Open string modulus
- n_i: Quantized fluxes

$$\Pi_{1} = 1, \ \Pi_{2} = z, \ \Pi_{3} = -z_{1}, \ \Pi_{4} = S,$$

$$\Pi_{5} = 5Sz, \ \Pi_{6} = \frac{5}{2}z^{2}, \ \Pi_{7} = 2z_{1}^{2}, \ \Pi_{8} = -\frac{5}{2}Sz^{2} - \frac{5}{3}z^{3},$$

$$\Pi_{9} = -\frac{2}{3}z_{1}^{3}, \ \Pi_{10} = -\frac{5}{6}z^{3}, \ \Pi_{11} = \frac{5}{6}Sz^{3} + \frac{5}{12}z^{4} - \frac{1}{6}z_{1}^{4},$$

Kähler potential:

$$K = -\ln\left[-i(S-\overline{S})\right] - \ln\left[\frac{5i}{6}(z-\overline{z})^3 + \frac{i}{S-\overline{S}}\left(-\frac{1}{6}(z_1-\overline{z_1})^4 + \frac{5}{12}(z-\overline{z})^4\right)\right] - 2\ln\mathcal{V}$$

NLO in g_s correction

Superpotential:

$$W = n_{11} + n_6 Sz + \frac{5}{2} \left(\frac{n_5}{5} + \frac{2n_6}{5} \right) z^2 + n_1 \left(\frac{5}{6} Sz^3 + \frac{5}{12} z^4 - \frac{1}{6} z_1^4 \right)$$

The self-dual G_4 fluxes

 $-\frac{n_7}{2}z_1^2$

Vacuum structure of F-theory

As a consequence of the self-dual condition to G_4 fluxes, all the moduli fields are stabilized at

$$D_S W = D_z W = D_{z_1} W = 0$$

z: CS modulus *S*: Dilaton

 z_1 : Open string modulus

 n_i : Quantized fluxes

VEVs

$$Rez = Rez_1 = ReS = 0$$

$$Imz = \left(\frac{6n_{11}}{5n_1}\right)^{1/4} \frac{2\sqrt{n_6}}{(8n_6(n_5 + n_6) - 5n_7^2)^{1/4}},$$

$$Imz_1 = \left(\frac{30n_{11}}{n_1}\right)^{1/4} \frac{\sqrt{n_7}}{(8n_6(n_5 + n_6) - 5n_7^2)^{1/4}},$$

$$ImS = \left(\frac{6n_{11}}{5n_1}\right)^{1/4} \frac{n_5}{\sqrt{n_6}(8n_6(n_5 + n_6) - 5n_7^2)^{1/4}},$$

Vacuum structure of F-theory

Although the fluxes are constrained by the tadpole condition,

$$\frac{\chi}{24} = n_{D3} + \frac{1}{2} \int_{CY4} G_4 \wedge G_4$$

$$\chi = 1860: \text{ Euler number of CY4}$$

$$n_{D3}: \text{ # of D3}$$

we find the consistent F-theory vacuum, e.g.,

$$n_1 = 1, n_5 = 15, n_6 = 10, n_7 = 2, n_{11} = 28$$

 $n_{D3} = 0$

All the moduli fields can be stabilized at the LCS point of CY fourfold

$$\operatorname{Re} z = \operatorname{Re} z_1 = \operatorname{Re} S = 0,$$

 $\operatorname{Im} z \simeq 2.28, \quad \operatorname{Im} z_1 \simeq 1.14, \quad \operatorname{Im} S \simeq 1.71$

Conclusion

OMirror symmetry techniques can be applied to the F-theory compactifications.

OWe explicitly demonstrate the moduli stabilization around the large complex structure point of the F-theory fourfold.

OAll the complex structure moduli can be stabilized at the Minkowski minimum.

Discussion

OQuantum corrections to the moduli potential OOther CY4 OStabilization of Kähler moduli

 \rightarrow LARGE volume scenario or KKLT