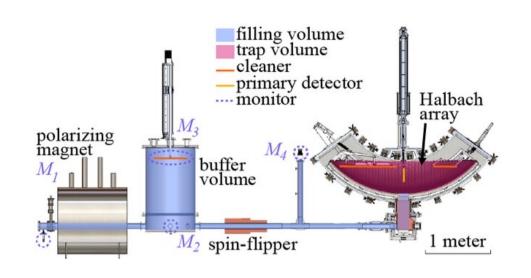
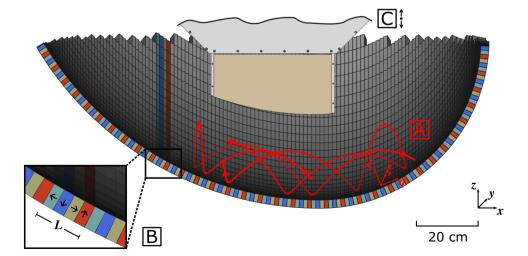

A new results of neutron lifetime measurement with cold neutron beam at J-PARC

Kenji MISHIMA (RCNP, Osaka University) mishima@rcnp.osaka-u.ac.jp

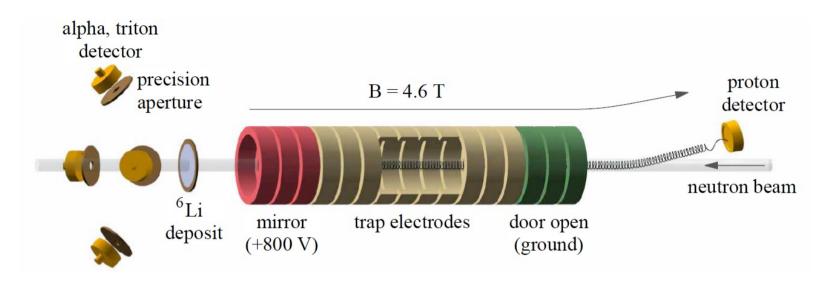

On behalf of J-PARC neutron lifetime collaboration

Neutron Lifetime Puzzle

- \triangleright Measured neutron lifetime values with beam method and storage method show significant discrepancy (more than 4.6 σ)
 - Experimental uncertainties that were not taken into account? (Phys. Rev. D 103, 074010)
 - New physics?
 - Dark decay? (Mod. Phys. Lett. A 35, 2030019 (2020))
 - Soft scattering with dark matter? (Phys. Rev. D 103, 035014)
 - Mirror neutron oscillation? (EPJ C 79: 484 (2019))


UCNτ experiment

➤ The most accurate experiment have done in Los Alamos in 2021.


F. M. Gonzalez *et al* (UCN τ Collaboration), Phys. Rev. Lett. 127, 162501 (2021)

$$\tau_n = 877.7 \pm 0.28_{stat}^{+0.22}_{-0.16_{syst}} s$$

> Storing UCNs in magnetic bottle, and detecting with scintillation detector.

Beam method NIST experiment by proton counting

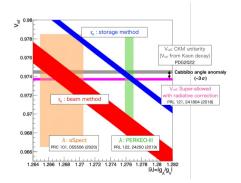
- 1. Monochromatic beam is transported to the magnetic trap.

 Neutron flux is monitored by a well calibrated ⁶Li/SSD detector.
- 2. Protons from the neutron decays captured in the magnetic trap with electrodes. Stored protons are released and detected by an SSD with thin surface layer.

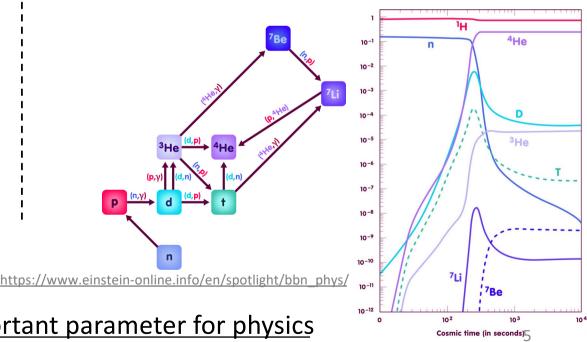
$$\tau_n = 887.7 \pm 1.2 [stat.] \pm 1.9 [syst.] s = 887.7 \pm 2.3 [combined] s$$

A. T. Yue et al., "Improved determination of the neutron lifetime." Physical review letters 111.22 (2013): 222501.

J. Nico et al., "Measurement of the neutron lifetime by counting trapped protons in a cold neutron beam." Physical Review C 71.5 (2005): 055502.

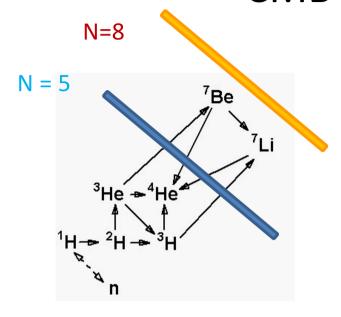

Neutron lifetime

- > Test of standard model
 - V_{ud} of the Cabibbo-Kobayashi-Maskawa (CKM) matrax can be calculated with:
 - Neutron lifetime (τ_n)
 - Axis/vector coupling constant


$$\lambda \equiv G_A/G_V$$

$$|V_{ud}|^2 = \frac{(4905.7 \pm 1.7) \text{ sec}}{\tau_n (1 + 3\lambda^2)}$$

→ Verification of the unitarity of the CKM matrix


- An input parameters for the Big Bang Nucleosynthesis (BBN)
 - Abundance of light elements in early universe can be calculated with:
 - Baryon-to-photon ratio
 - Nuclear cross sections
 - Neutron lifetime

The neutron lifetime is an important parameter for physics

Big Bang Nucleosynthesis from SUBARU Telescope

Big bang nucleosynthesis CMB & He/H & Neutron Lifetime

Minutes: 1/60 1 5 15 60

10⁻⁴

10⁻⁹

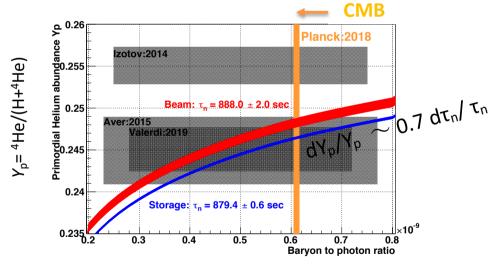
10⁻¹⁹

10⁻¹⁹

10⁻¹⁹

10⁻¹⁹

10⁻¹⁹

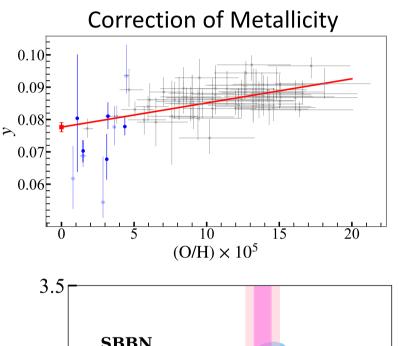

10⁻¹⁹

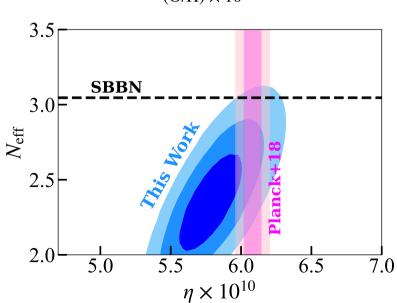
10⁻¹⁹

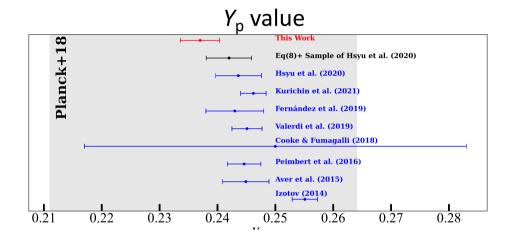
Temperature (10⁹ K)

Light elements up to N=7 were created in 3 minute after the big bang (Big Bang Nucleosynthesis). Abundance of them can be calculated by baryon-to-photon ratio η , nuclear cross sections, and **the neutron lifetime**.

He/H observation of HII region in galaxies


η (Baryon-to-photon ratio $\times 10^{-10}$)


BBN model and η gives accurate prediction of the abundance of light elements, e.g. $Y_p = {}^4\text{He}/(\text{H+}^4\text{He})$. Comparing with the Y_p predicted and observed enable testing the early universe.

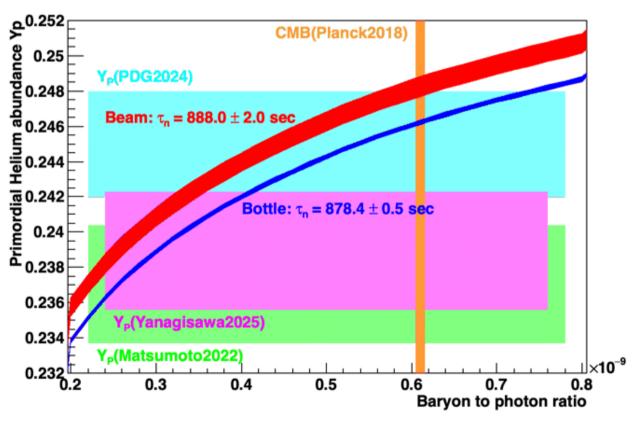

- 1. Izotov, Y. I., G. Stasińska, and N. G. Guseva. "Primordial 4He abundance: a determination based on the largest sample of H II regions with a methodology tested on model H II regions." *Astronomy & Astrophysics* 558 (2013): A57.
- 2. Valentino E, et al., "Reconciling Planck with the local value of H0 in extended parameter space", Physics Letters B 761 (2016) 242–246.

Recent observation by SUBARU telescope

Resent observation from SUBARU telescope gives very small Y_p value.

$$N_{\rm eff} = 3.11^{+0.34}_{-0.31},$$

$$\eta \times 10^{10} = 6.08^{+0.06}_{-0.06},$$


$$\xi_e = 0.05^{+0.03}_{-0.02}.$$

The degeneracy parameter of the electron neutrino ($\nu_e - \overline{\nu_e}$ asymmetry) is non-zero by more than 2σ .

SUBARU update (2025)

An update of Y_p is now on arXiv.

H. Yanagisawa et al., "EMPRESS. XV. A New Determination of the Primordial Helium Abundance Suggesting a Moderately Low Y_P Value", arXiv (2025), https://doi.org/10.48550/arXiv.2506.24050

$$Y_p = 0.2387^{+0.0036}_{-0.0031}$$

 $N_{eff} = 2.54^{+0.21}_{-0.20}$

If lepton asymmetry is allowed,

$$N_{eff} = 3.23^{+0.27}_{-0.26}$$

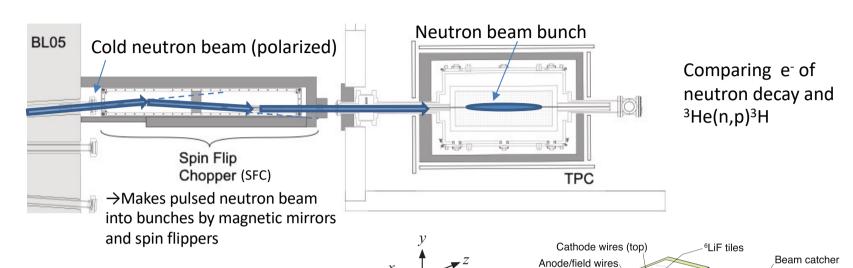
 $\xi_e = 0.05^{+0.02}_{-0.02}$

These mitigates the Hubble

tension.

Or Neutron lifetime of 845 s!

A new beam experiment at J-PARC by detecting electrons


Neutron Lifetime experiment using pulsed neutron at J-PARC

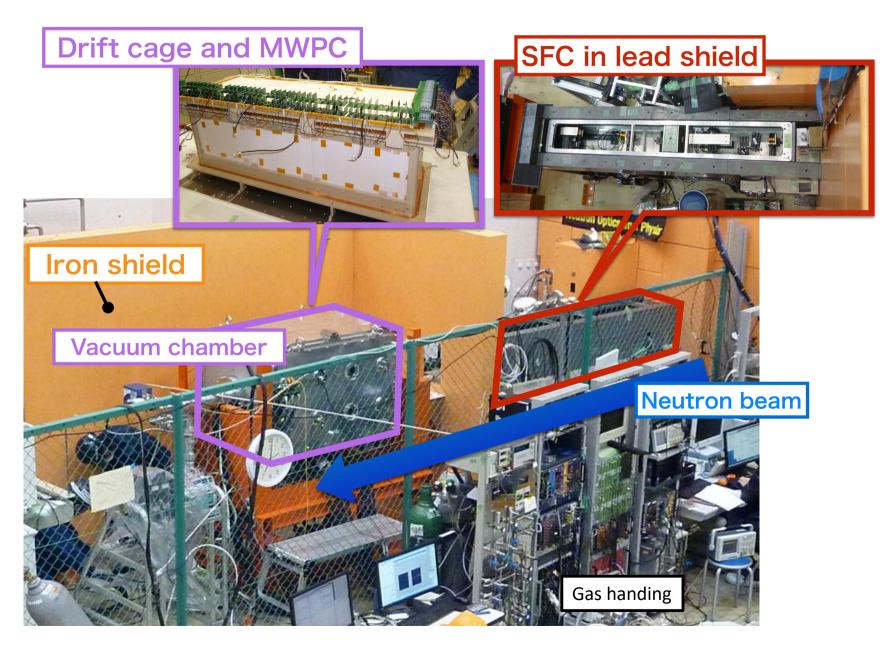
- K. Mishima¹, Y. Fuwa², T. Hasegawa¹, T. Hoshino⁴,
- R. Hosokawa⁴, G. Ichikawa³, S. Ieki⁵, T. Ino³,
- Y. Iwashita⁶, M. Kitaguchi¹, S. Makise⁴,
- S. Matsuzaki⁴, T. Mogi⁷, K. Morikawa¹,
- N. Nagakura⁷, H. Okabe¹, H. Otono⁴,
- Y. Seki⁵, D. Sekiba⁸, T. Shima⁹, H. E. Shimizu¹⁰,
- H. M. Shimizu¹, N. Sumi³, H. Sumino⁶, M. Tanida⁴,
- T. Tomita⁴, H. Uehara⁴, T. Yamada⁶, S. Yamashita¹¹,
- K. Yano⁴, T. Yoshioka⁴

Nagoya Univ.¹, JAEA², KEK³, Kyushu Univ.⁴, Tohoku Univ.⁵, Kyoto Univ.⁶, The Univ. of Tokyo⁷, Univ. of Tsukuba⁸, Osaka Univ.⁹, Sokendai¹⁰, Iwate Pref. Univ.¹¹

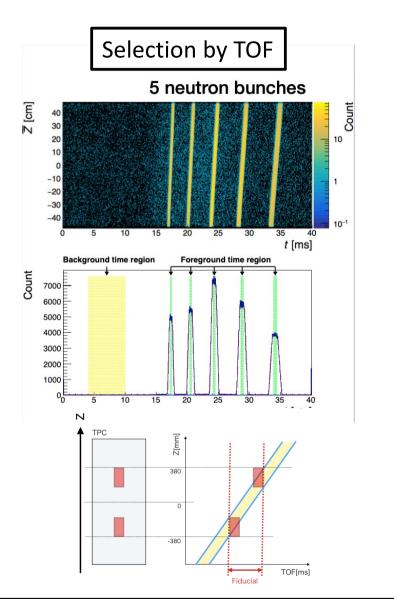
Lifetime measurement at J-PARC/BL05 (Beam Line 05)

Drift wires

- Detector: Time Projection Chamber (TPC)
 - Gas: ⁴He, CO₂, ³He (~85%, ~15%, 0.5 - 2 ppm, respectively) Total pressure: 100 kPa or 50 kPa
 - Signals are detected with a Multi Wire Proportional Chamber (MWPC)

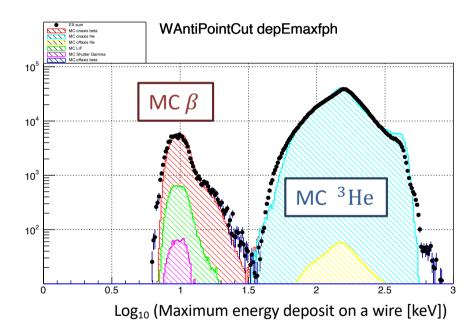

$$\tau_n = \frac{1}{\rho \sigma_0 v_0} \frac{(S_{\rm He}/\varepsilon_{\rm He})}{(S_{\beta}/\varepsilon_{\beta})} \quad \begin{array}{l} \rho & : {}^3{\rm He~dencity} \\ \sigma_0 & : {}^3{\rm He~neutron~absorption~cross~section} \\ v_0 & : {\rm Velocity~of~neutron} \\ S_{\rm He} & : {\rm Number~of~}^3{\rm He~neutron~absorption~event} \\ S_{\beta} & : {\rm Number~of~neutron~}\beta {\rm decay} \\ \varepsilon_{\rm He}, \varepsilon_{\beta} : {\rm Efficiency} \end{array}$$

- > We aim to provide the most precise experimental neutron lifetime value for beam method as an important piece to solve the neutron lifetime puzzle
 - Goal: measurement with ~1 s accuracy

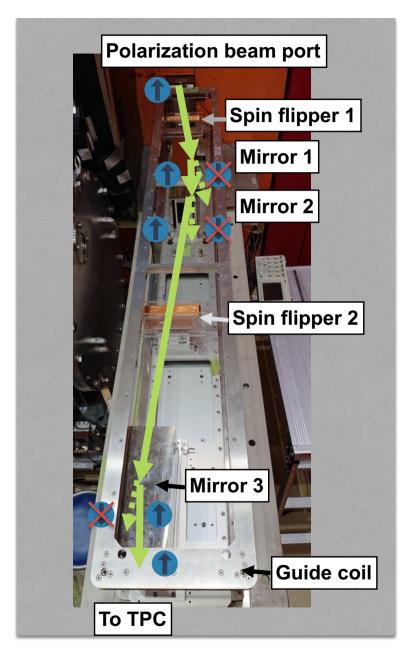

Neutron beam bunch

Drift cathode

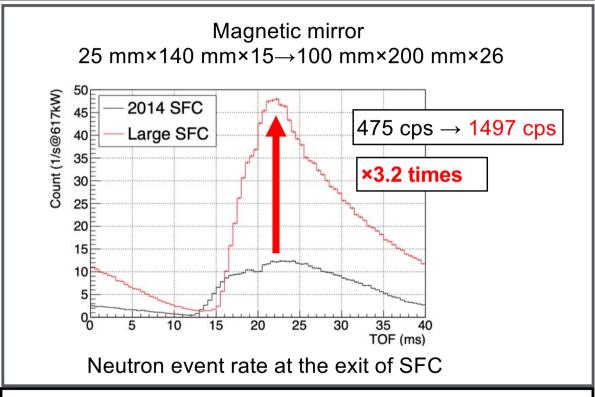
Experimental Setup



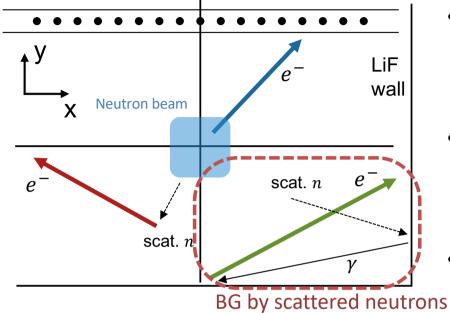
Analysis

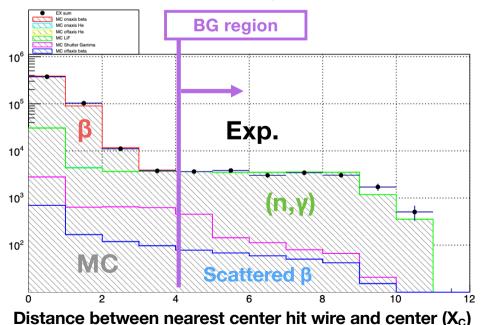

TOF cut applied when the neutron bunches are completely in the TPC.

Selection by maximum energy deposit

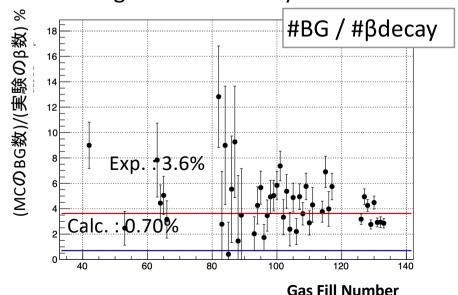

This cut can clearly distinguish β and ${}^{3}\text{He}(n,p){}^{3}\text{H}$ events

Upgrade of the Spin Flip Chopper

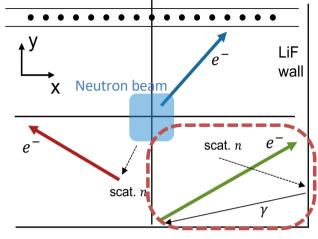

Spin Flip Chopper (SFC)

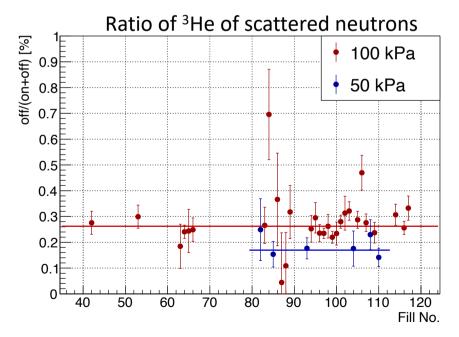

- The neutron intensity is limited by the size of the mirrors.
- Larger mirrors were installed in 2020.

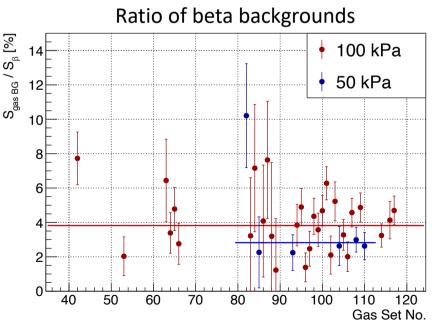
- Larger magnetic mirror increases intensity by
 3.2 times
- Statistical accuracy of 1 s can be reached in 3 months of measurement
- Neutron polarization $P \sim 99\%$


Excess of background

- Neutrons scattered by the TPC operating gas are absorbed by the LiF inner wall, some of which emit γ-rays, creating (n,γ) background (BG) events.
- Although the events are created in the BG region close to the wall, the amount of the events was about five times larger than expected.


The indeterminacy in the distribution of the (n,γ) BGs and the large uncertainty in the rate at which the BGs leak into the signal region were the largest sources of systematic error.


Low gas pressure operation


- First result (2014-2016): TPC gas pressure 100 kPa
- $(^{4}\text{He}: CO_{2}: ^{3}\text{He} = 85 \text{ kPa}: 15 \text{ kPa}: 50 200 \text{ mPa})$
- Operation with gas pressure with 50 kPa can reduce background

 $(^{4}\text{He}: CO_{2}: ^{3}\text{He} = 42.5 \text{ kPa}: 7.5 \text{ kPa}: 50 - 200 \text{ mPa})$

BG by scattered neutrons

Measurement at 50 kPa reduces the number of background events due to gas scattering to 60% of that at 100 kPa.

Data obtained

Physics measurements taken on 49 gas sets in 2014 - 2023

• With 100 kPa

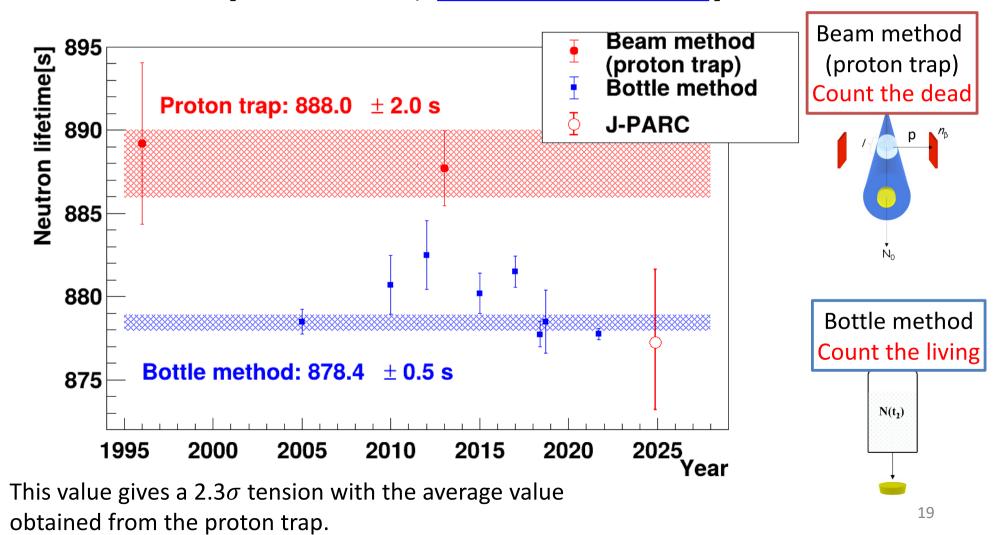
Acquisition year	Num. of Gas Set	MLF Power [kW]	DAQ time [h]	
2014	1	300	59	
2015	1	500	31	First result (stat. 10 s)
2016	4	200	424	
2017	14	150, 300, 400	1303 (A)	Statistic
2018	6	400, 500	614	~2.2 s
2019	3	500	348	
2021	1	700	38	After SFC
2022	3	700, 800	253 (B)	Upgrade
2023	1	800	126	

The combined

Statistic is 1.4 s

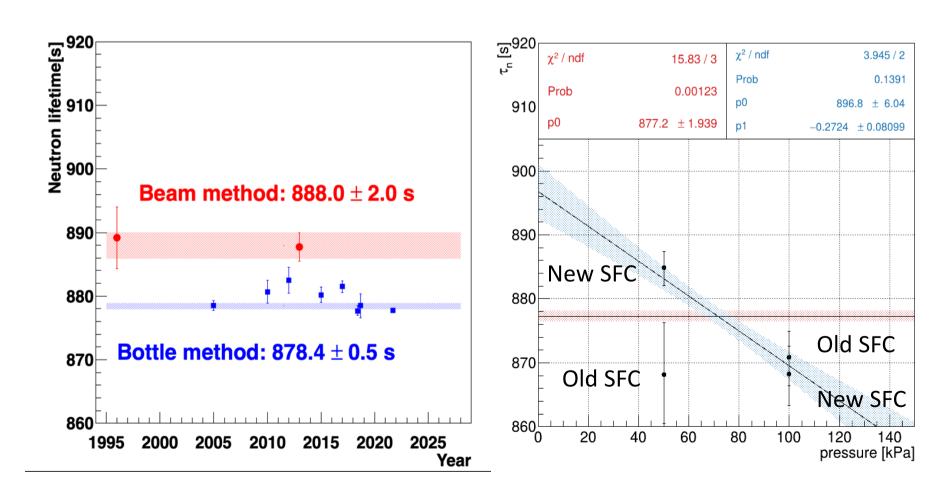
With 50 kPa

Acquisition year	Num. of Gas Set	MLF Power [kW]	DAQ time [h]
2017	3	150,300	253
2018	3	400, 500	357 ^(C)
2021	1	700	86
2022	7	700, 800	839 (D)
2023	1	800	155

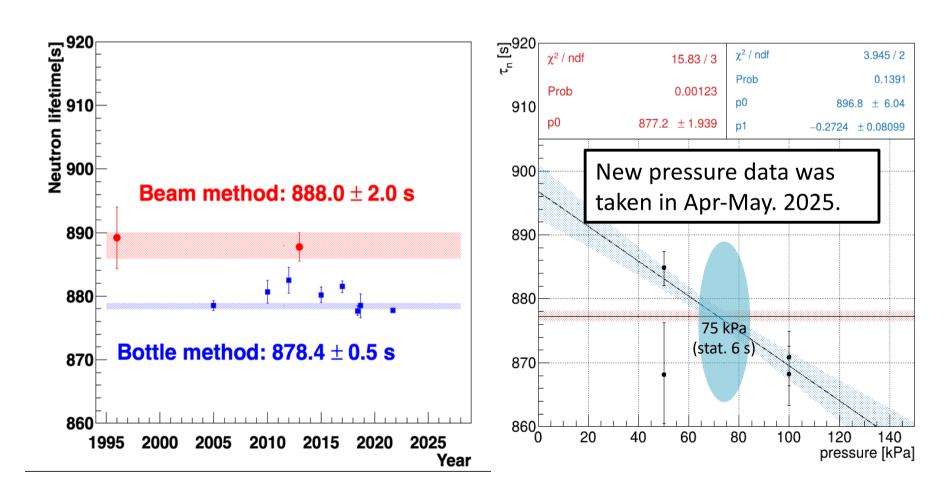

Statistic ~1.8 s

After SFC Upgrade

A new result from J-PARC


The improved results using data from 2014 to 2023 are as follows:

$$\tau_n = 877.2 \pm 1.7(stat.)_{-3.6}^{+4.0} (sys.) = 877.2_{-4.0}^{+4.4} \text{ s}$$
 [Y. Fuwa et al., arXiv:2412.19519v1]

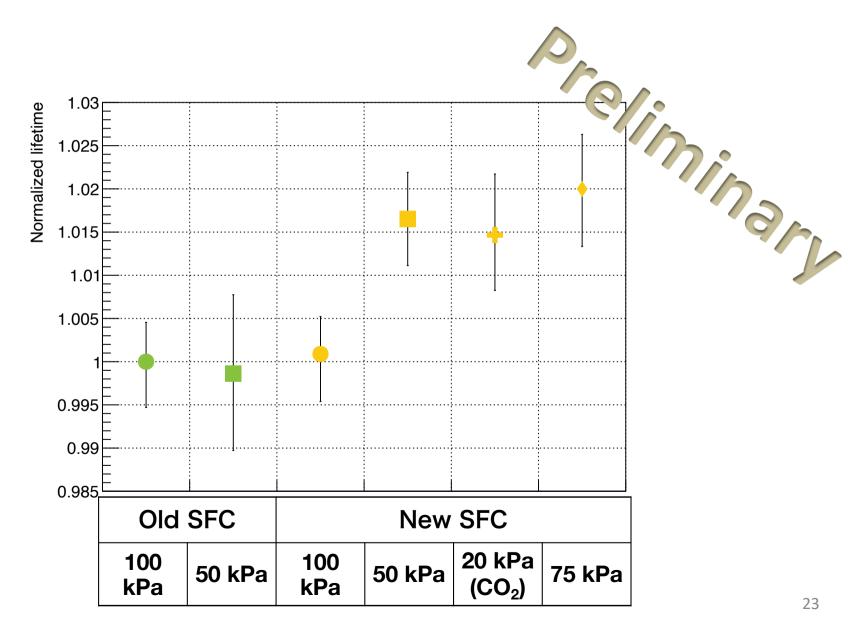

Discussion

- The χ^2/NDF of our fitting is large.
- If there is a pressure dependence, the fitting is going to be better, and then consistent with beam method.

Discussion

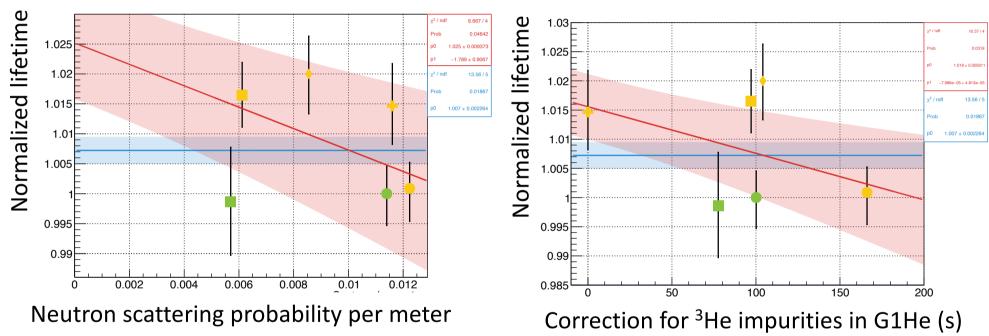
- The χ^2/NDF of our fitting is large.
- If there is a pressure dependence, the fitting is going to be better, and then consistent with beam method.

75 kPa and pure CO₂ run


- We have used 100 and 50 kPa of HeCO₂ with mixture of 85%: 15%.
- In April in 2025, we took new data sets: with HeCO₂ of 75 kPa and 20 kPa of pure CO₂ run.
 - The amount of ³He in the the He gas (G1He) must be corrected.
 - For pure CO₂ run, no need for the ³He in the G1He correction.
 - After solved the discharging problem, we have succeeded to obtain a week of data taking.

Working gas conditions

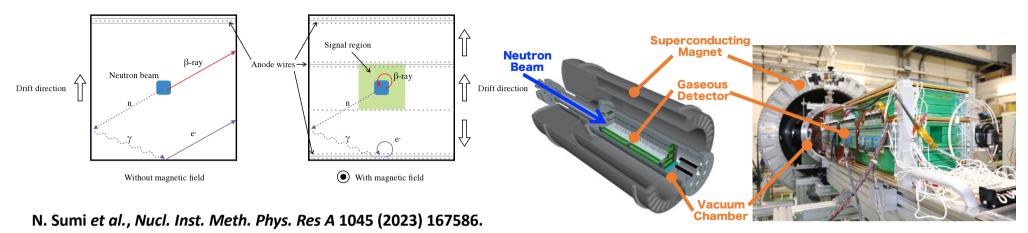
ľ	1		
ı	V	e	W


	100 kPa	50 kPa	75 kPa	CO ₂ 20 kPa
CO ₂	15 kPa	7.5 kPa	11.25 kPa	20 kPa
⁴ He	85 kPa	42.5 kPa	63.75	0 kPa

Results Preliminary

Dependency for Scattering Probability and ³He amount in G1He

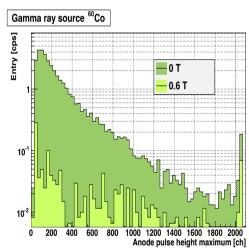
Preliminary



No clear dependencies were found.

Changes in gas conditions alter the scattering probability and electron path length.

→This provides a clue for investigating consistency with MC.


Background suppression with solenoidal magnetic field

J-PARC/MLF/BL05 Superconducting magnet Liquid Helium

To achieve 1 s, we are preparing for background suppression by using multi-layered TPC in a solenoid magnetic field. The magnetic field can

suppress the gamma ray background to 1/50.

Gamma ray suppression with magnetic field

The first data was obtained on this apparatus in Feb. 2024. By analyzing 3 hours of run with the magnetic field, we obtained $\tau_n = 882 \pm 78$ [s] (no systematic considered). Experiment is planed in Dec. 2025.

Summary

- Neutron lifetime is an important parameter for particle, nuclear, and astrophysics.
- However, the value have 9.5 s (4.6 σ) discrepancy with two method of measurements
 - τ_n = 888.0 \pm 2.0 (Beam method) - τ_n = 878.4 \pm 0.5 (Storage method)
- A new "beam" experiment is ongoing at J-PARC
 - We obtained physics data (statistic 1.7 s).
 - Analysis has been fixed and opened blind in Nov. 2024.
 - The result is now on arXiv:

Y. Fuwa et al., arXiv:2412.19519v1

$$\tau_n = 877.2 \pm 1.7 \, (stat.)_{-3.7}^{+4.0} (sys.) \, [s]$$

- This result is consistent with bottle method measurements but exhibits a 2.3σ tension with the average value obtained from the proton-detection-based beam method.
- There is a still room for discussion in our results.
- Additional data will be taken with less background conditions.
- A new apparatus with a solenoid magnet is getting ready for physics measurements in December 2025.