Chiral symmetry of QCD and some of its implications

Matthias R. Schindler

The 9th International Symposium on Symmetries in Subatomic Physics Nara, Japan, September 2025

Work supported by the U.S. Department of Energy

Chiral symmetry

- Symmetry of QCD in limit of massless quarks
- Broken
 - Explicitly
 - Spontaneously
- Impact on low-energy hadrons and interactions

QCD Lagrangian

- Lagrangian

$$\mathcal{L}_{\mathsf{QCD}} = \sum_{f=rac{u,d,s,}{c,b,t}} ar{q}_f \left(i
ot \! \! D - m_f
ight) q_f - rac{1}{4} \mathcal{G}_{a\mu
u} \mathcal{G}_a^{\mu
u}$$

- Light quarks $m_u, m_d, m_s \ll 1$ GeV, heavy quarks $m_c, m_b, m_t \gtrsim 1$ GeV
- Low energies $\ll 1 \text{ GeV} \rightarrow \text{ignore heavy quarks as d.o.f.}$
- Simple quark model: $M_p\gg 2m_u+m_d\to {\rm approximate}\ m_u=m_d=0\,(=m_s)$

Chiral limit

QCD in the chiral limit

- QCD Lagrangian in chiral limit

$$\mathcal{L}_0 = (\bar{q}_R i \not \! D q_R + \bar{q}_L i \not \! D q_L) - \frac{1}{4} \mathcal{G}_{a\mu\nu} \mathcal{G}_a^{\mu\nu}$$

- Right- and left-handed quark fields

$$q_R = \frac{1}{2}(\mathbb{1} + \gamma_5)q, \quad q_L = \frac{1}{2}(\mathbb{1} - \gamma_5)q$$

where

$$q = \begin{pmatrix} u \\ d \end{pmatrix}$$
 or $q = \begin{pmatrix} u \\ d \\ s \end{pmatrix}$

4

Chiral symmetry

$$\mathcal{L}_0 = (\bar{q}_R i \not \!\! D q_R + \bar{q}_L i \not \!\! D q_L) - \frac{1}{4} \mathcal{G}_{a\mu\nu} \mathcal{G}_a^{\mu\nu}$$

- Invariant under independent global $U(N_l)$ transformations

$$q_R \mapsto \tilde{U}_R q_R, \quad q_L \mapsto \tilde{U}_L q_L$$

- Consider $U(2) \simeq SU(2) \times U(1)$
- $U(1)_A$ broken by anomaly $\Rightarrow SU(2)_R \times SU(2)_L \times U(1)_V$

Chiral symmetry: Invariance of \mathcal{L}_0 under global $SU(2)_R \times SU(2)_L$

5

Explicit chiral symmetry breaking

- Quark masses nonzero

$$\mathcal{L}_{\mathcal{M}} = -(\bar{q}_R \mathcal{M} q_L + \bar{q}_L \mathcal{M} q_R)$$

where

$$\mathcal{M} = \begin{pmatrix} m_u & 0 \\ 0 & m_d \end{pmatrix}$$

- Not invariant under $SU(2)_R \times SU(2)_L$

Explicit chiral symmetry breaking

- For $m_u = m_d = \hat{m} \Rightarrow \mathcal{M} = \hat{m} \mathbb{1}$
 - \rightarrow Invariant under $U_R = U_L \in SU(2)_V$: isospin

Expected consequences of chiral symmetry

- $SU(2)_R \times SU(2)_L$
 - Approximately mass degenerate hadron multiplets
 - Opposite parity ("parity doubling")
- Observed hadron spectrum
 - Isospin multiplets $\to SU(2)_V$
 - No parity doubling
 - Pions much lighter than other nonstrange hadrons

Spontaneous breaking of chiral symmetry

Chiral symmetry spontaneously broken

$$SU(2)_R \times SU(2)_L \to SU(2)_V$$

- Pions = Nambu-Goldstone bosons
- Nonzero quark masses ⇒ pions massive, but light
- Assumption: No proof for spontaneous chiral symmetry breaking

Chiral perturbation theory

- Effective field theory of low-energy QCD
- Formulated in terms of observed hadrons (pions, nucleons)
- Chiral symmetry
 - Nonlinearly realized
 - Ward-Takahashi identities: relations between different processes
- Systematic expansion in terms of q/Λ_χ and M_π/Λ_χ with $\Lambda_\chi \approx$ 1 GeV(?)
- Power counting: determine importance of individual contributions

Example 1: $\pi\pi$ scattering

- At threshold two S-wave scattering lengths $a_0^{I=0}$, $a_0^{I=2}$
- ChPT predicts scattering lengths at LO
- Calculated up to two-loop order, e.g.,

$$\begin{aligned} a_0^{I=0} &= 0.16 & \text{(LO)} \\ a_0^{I=0} &= 0.20 \pm 0.01 & \text{(NLO)} \\ a_0^{I=0} &= 0.217 \pm 0.009 & \text{(NNLO)} \end{aligned}$$

- $|a_0^{I=0} - a_0^{I=2}|$ in agreement with measurement in pionium

Precision tool in meson sector

- π and K form factors
- $\pi^0 \to \gamma \gamma$
- (Semi-)leptonic K decays $ightarrow |V_{us}|$
- Rare decays
- ..

Baryon ChPT

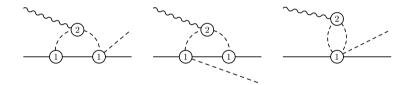
- Include nucleons as degrees of freedom
- Nucleon mass m_N does not vanish in chiral limit: "This complicates life a lot."
- New approaches for consistent power counting:
 - Heavy-baryon ChPT (HBChPT): expansion in $1/m_N$
 - Infrared regularization (IR)
 - Extended On-Mass-Shell (EOMS) scheme

Example 2: Nucleon axial radius

Axial form factor of nucleon $G_A(q^2)$

- Parameterized as

$$G_A(q^2) = \frac{g_A}{(1 - \frac{q^2}{M_A^2})^2} = g_A \left(1 + \frac{1}{6} \langle r_A^2 \rangle q^2 + \cdots \right)$$


- M_A : axial mass, $\langle r_A^2 \rangle = \frac{12}{M_A^2}$: axial radius
- Determined from
 - (Quasi-)elastic (anti-)neutrino scattering: $M_{A,\nu} = (1.001 \pm 0.020)\,\mathrm{GeV}$
 - Pion electroproduction $\gamma^* + p \to n + \pi^+$ at threshold: $M_{A,\pi} = (1.068 \pm 0.017)\, {\rm GeV}$

- In pion electroproduction axial radius determined from amplitude

$$E_{0+}^{(-)}(k^2) = \frac{eg_A}{8\pi F_\pi} \left[\underbrace{1 + \frac{k^2}{4m_N^2} \left(\kappa_V + \frac{1}{2}\right) + \frac{k^2}{6} r_A^2}_{\text{old}} + \cdots \right]$$

- In pion electroproduction axial radius determined from amplitude

$$E_{0+}^{(-)}(k^2) = \frac{eg_A}{8\pi F_\pi} \left[\underbrace{1 + \frac{k^2}{4m_N^2} \left(\kappa_V + \frac{1}{2}\right) + \frac{k^2}{6} r_A^2}_{\text{old}} + \underbrace{\frac{M^2}{8\pi^2 F_\pi^2} f\left(\frac{k^2}{M^2}\right)}_{\text{new: ChPT}} + \cdots \right]$$

- $-\Delta M_A = -0.056 \text{ GeV}$
- $M_{A,\pi} = (1.068 \pm 0.017) \text{ GeV} \leftrightarrow M_{A,\nu} = (1.001 \pm 0.020) \text{ GeV}$

BChPT applications

- Mass
- Magnetic moment
- Form factors
- Compton scattering
- πN scattering
- Pion photoproduction
- ..

Nucleon-nucleon interactions

- Long range: one-pion exchange
- Intermediate range: two-pion exchange
- Short range: three-pion exchange, heavy meson exchanges,...?
- Impact of chiral symmetry?

Systematic approach to nuclear forces

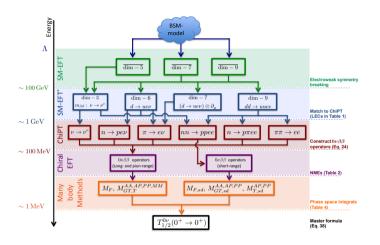
Chiral Effective Field Theory

	Two-nucleon force	Three-nucleon force	Four-nucleon force
LO (Q ⁰)	X 	_	
NLO (Q²)	XHMMH		
N²LO (Q³)	ЫĄ	H H X X	
N³LO (Q⁴)	X44X-	母针以	M 141.

Source: E. Epelbaum

Chiral Effective Field Theory

- One-pion exchange



- Vertices given by πN Lagrangian of BChPT
- Also holds for two-, three-,...pion exchange
- Long- and intermediate-range physics determined from pion-pion and pion-nucleon results
- Also applies to electromagnetic and weak probes \rightarrow two-body currents

Chiral symmetry and BSM physics

- Nucleons used in searches for beyond-the-standard-model (BSM) physics
- BSM models formulated in terms of quark fields
- Map chiral symmetry properties of quark operators onto nucleon level
 constraints on allowed operators
 - ⇒ constraints on allowed operators
- Relations between different operators from chiral Ward identities

Chiral symmetry and BSM physics

Neutrinoless double beta decay

- Renormalization analysis of light Majorana exchange in two-nucleon sector $\Rightarrow nn \rightarrow ppe^-e^-$ contact terms at LO
- Determine from
 - Data?
 - Lattice QCD?
- Related through chiral symmetry to charge independence breaking (CIB) NN interaction
- Use constraints on CIB to constrain $0\beta nn$ contribution

Chiral extrapolations

- Lattice QCD calculations performed at various pion masses
- Need to extrapolate to physical pion mass
- Chiral perturbation theory: M_π expansion of observables
- Use ChPT techniques to account for finite volume and/or finite lattice spacing

Conclusions

Chiral symmetry

- Approximate symmetry of QCD
- Spontaneously and explicitly broken
- Determines low-energy hadron interactions
- Highly successful in meson, one-baryon, and NN, NNN, ...sectors
- Important guide in constructing hadronic level operators for BSM physics
- Chiral extrapolations of lattice QCD results