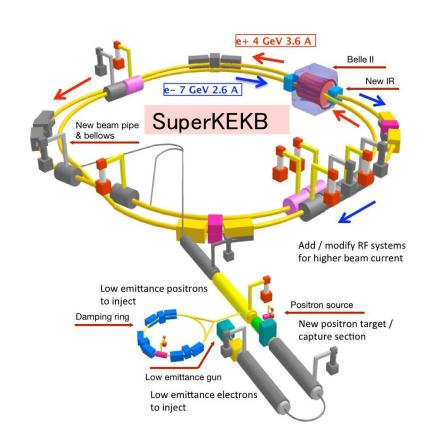

Lepton flavor violation of tau decays at Belle/Belle II

Kenji Inami (Nagoya univ.)
For Belle and Belle II collaboration

KEKB/Belle experiment

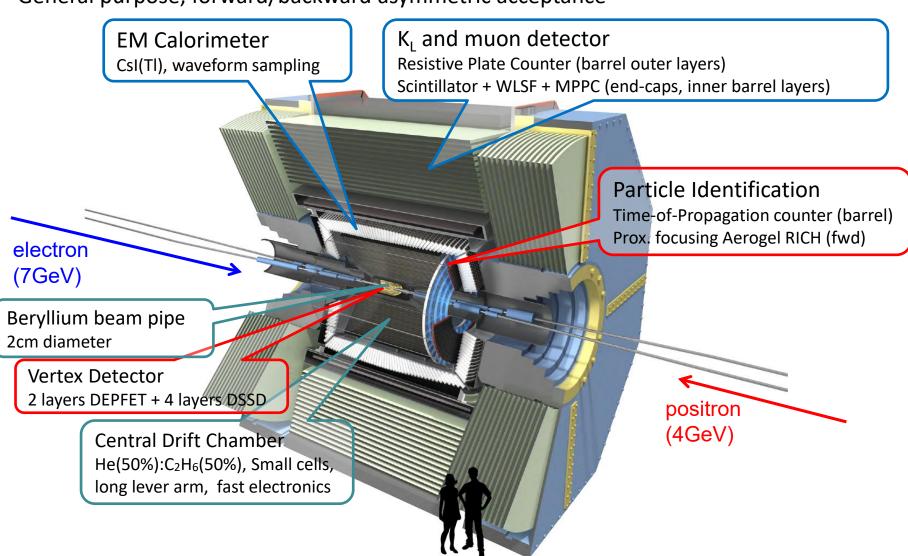
- Electron(8GeV)-positron(3.5GeV) collider experiment at KEK Tsukuba Japan
- A B-factory is also a tau-factory. Collected $\sim 10^9 \, \tau$ pairs
- Belle detector; good tracking and particle identification, <u>forward/backward</u> <u>asymmetric geometry</u>.



SuperKEKB and Belle II experiment

- Advanced B-factory
 - Electron (7GeV), positron (4 GeV)
- Upgraded KEKB accelerator
- Challenges to higher luminosity
 - Narrower beam at IP
 - Higher beam current
 - Detector works with higher beam background and trigger rates

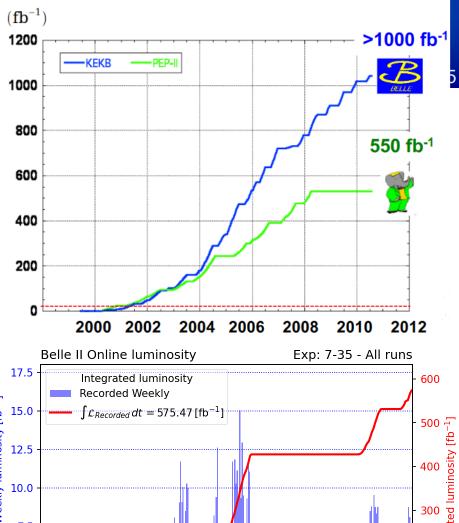
Target integrated luminosity = $50ab^{-1}$ \rightarrow $^{\sim}5x10^{10} \tau$ pairs

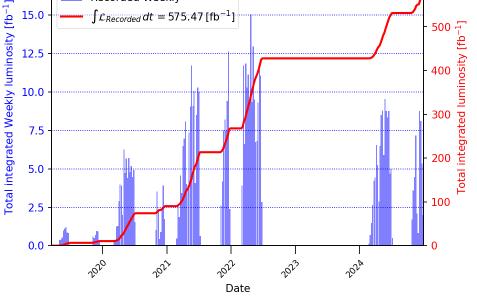

x50 higher than previous B factory

Belle II detector

General purpose, forward/backward asymmetric acceptance

Belle/Belle II data

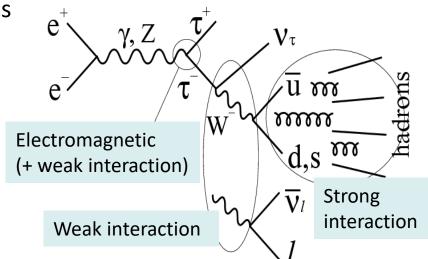

• <u>Belle</u>:


- > 1000 fb⁻¹ recorded at around Y(4S)
- Cf. BaBar: 550 fb⁻¹
- Peak luminosity: 2.1 x 10³⁴ cm⁻² s⁻¹

Belle II

searches

- Peak instantaneous luminosity:
 5.1 x 10³⁴ cm⁻² s⁻¹ (world record)
- Integrated luminosity:
 ~575 fb⁻¹ recorded at Y(4S),
 ~42 fb⁻¹ recorded 60 MeV below Y(4S), for background studies
 ~19 fb⁻¹ recorded at ~10.8 GeV for exotic hadron
- Larger data than Belle/BaBar are coming soon.

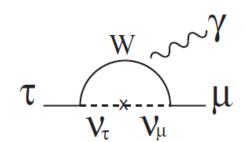


Tau physics program

• The world largest number of tau-pair events in e⁺e⁻ collisions offer data for tau physics analyses with high precision.

- Tau mass, v_{τ} mass, Lifetime
- Test of Universality
- Hadronic decays
 - Search for second class current; $\tau \rightarrow \pi \eta \nu$
 - Mass spectrum in $\tau \rightarrow \pi \pi^0 \nu$
 - **–** ...
- Electric Dipole Moment (CP/T violation)
- CP violation in tau decay; $\tau \rightarrow K_s \pi \nu$, etc.
- Lepton flavor violating decays
 - $\tau \rightarrow \mu \gamma$, e γ , $\mu \eta$, e η , p γ , $\Lambda \pi$, eee, ..., e+ α

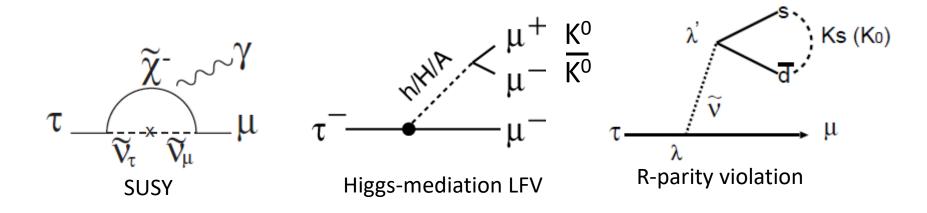
New physics interaction??



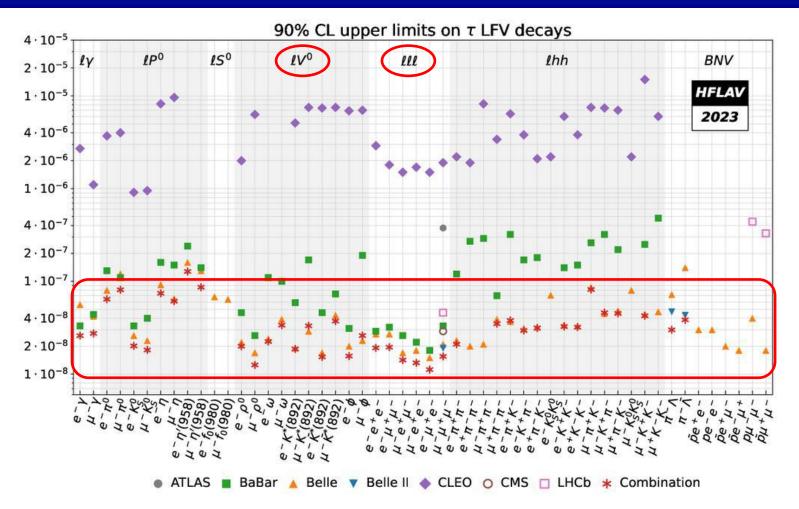
Lepton Flavor Violation in tau decay

In the Standard Model, LFV is highly suppressed.

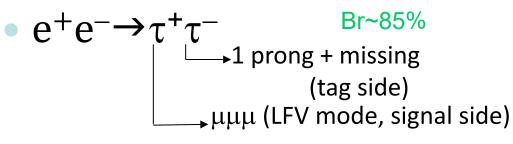
Impossible to access; Br<O(10⁻⁵⁴)


Many extensions of the SM predict LFV decays. Their branching fractions are enhanced as high as current experimental sensitivity

⇒Observation of LFV is a clear signature of New Physics (NP)

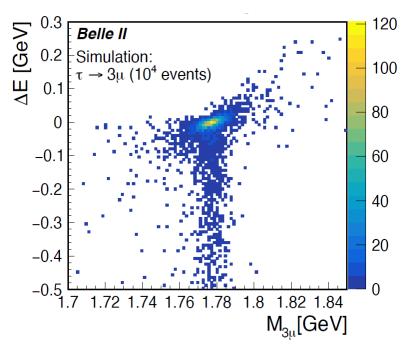

Tau lepton: the heaviest charged lepton

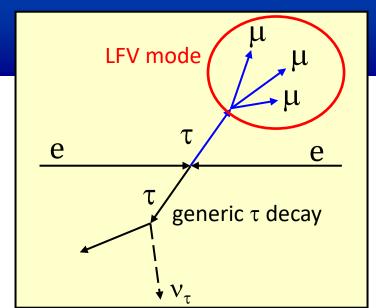
- Opens many possible LFV decay modes which depend on NP models


Upper limits on LFV τ decays

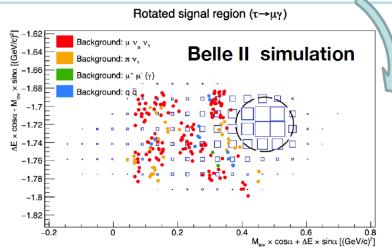
- Belle, Babar reached O(10⁻⁸) branching ratio, LHCb improving the result
- $\tau \rightarrow \ell \ell \ell$, ℓ +mesons (to charged particles) show better sensitivity because of less background.

н

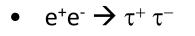

Tau LFV analysis



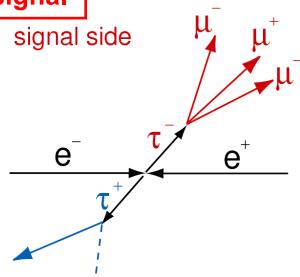
Fully reconstructed


Signal extraction: $\text{M}_{3\mu}\text{--}\Delta E$ plane (or rotated signal plane to reduce correlation)

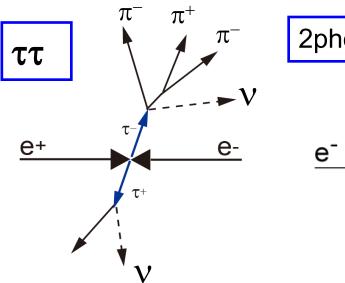
Evaluate background from side band


BG contribution is small for 3lepton modes because of good PID performance, however <u>non-negligible for ℓ+γ modes</u>

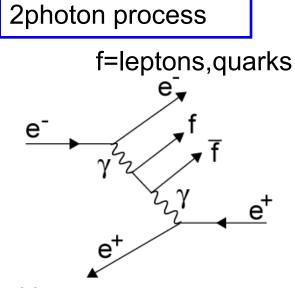
The Belle II Physics Book arXiv:1808.10567v2



LFV τ decays; Signal and Background


1 prong tau decay (BR~85%)

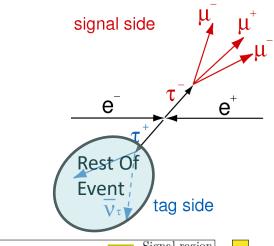
signal

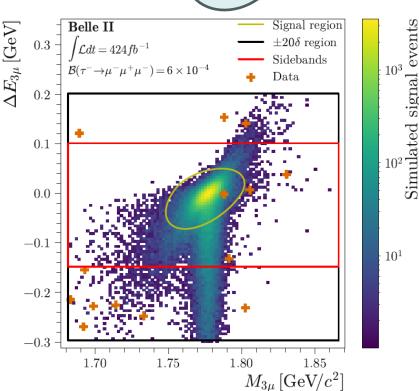

- Neutrino(s) in tag side
- Particle ID
- (Mass of mesons)


tag side

Neutrinos in both side

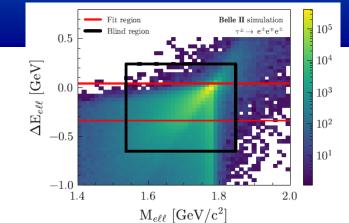
Missing energy in signal side

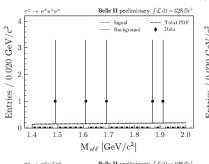


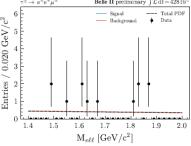


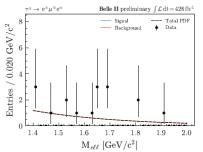
Search for $\tau \rightarrow \mu \mu \mu$

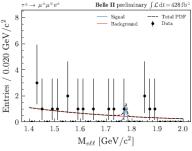
- Updated by Belle II using 424 fb⁻¹ data
- Reconstruct signals with inclusive untagged approach to improve signal eff.
- Reject backgrounds with data-driven selections + Boosted Decision Tree classifier
 - Using Rest-Of-Event properties
- Signal efficiency improved
 - 20% (~3 x Belle)
- One events in the signal region
 - 0.7 events expected
- Br<1.9x10⁻⁸ at 90% CL
 - World's best sensitivity
 - Previous: 2.1x10⁻⁸ by Belle (782 fb⁻¹)

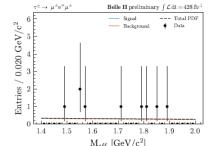


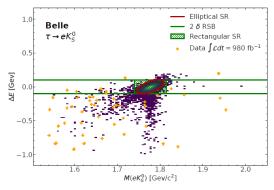


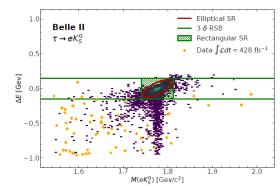

Search for $\tau \rightarrow e\ell\ell$

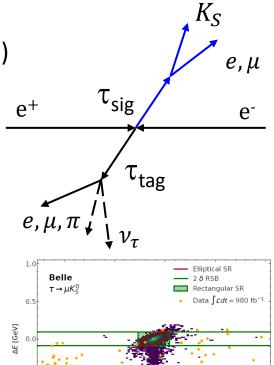

- Inclusive-tagging method
- Optimized the selection criteria for each mode
 - Cut-base preselection
 - Data-driven BDT classifier
- Signal efficiency
 - 15 ~ 24 % (2~3 x Belle)
- Applied unbinned likelihood fits to M_{ell} to improve sensitivity
- Data: 428 fb⁻¹ (~3.9x10⁸ ττ) at Belle II
- No significant excess
- Br<(1.3-2.5)x10⁻⁸ at 90% CL.
 - Most stringent upper limit for 4 modes.

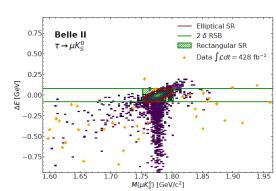

	$N_{ m exp}$	$N_{ m obs}$	$C_{ m bg}$	\mathcal{B} (10 ⁻⁸)	$\mathcal{B}_{\exp}^{UL} \ (10^{-8})$	$\mathcal{B}_{ m obs}^{UL} \ (10^{-8})$
$e^-e^+e^-$	$6.1^{+4.3}_{-2.9}$	5	$0.52^{+2.64}_{-2.60}$	0	2.7	2.5
$e^-e^+\mu^-$	$12.1_{-4.3}^{+5.7}$	12	$-0.40^{+1.67}_{-1.68}$	0	2.1	1.6
$e^-\mu^+e^-$	$10.5^{+5.3}_{-4.3}$	17	$-2.90^{+1.48}_{-1.54}$	0	1.7	1.6
$\mu^-\mu^+e^-$	$20.7^{+6.6}_{-5.5}$	18	$-2.50^{+1.45}_{-1.52}$	$0.48^{+0.90}_{-0.48}$	1.6	2.4
$\mu^-e^+\mu^-$		9	$-0.34^{+1.93}_{-1.94}$	0	1.4	1.3





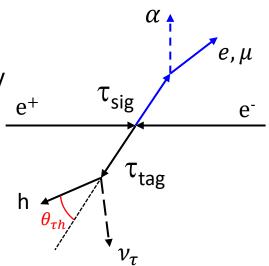

Search for $\tau \rightarrow \ell K_s (K_s \rightarrow \pi^+\pi^-)$


Belle & Belle II: [JHEP 08 (2025) 092]

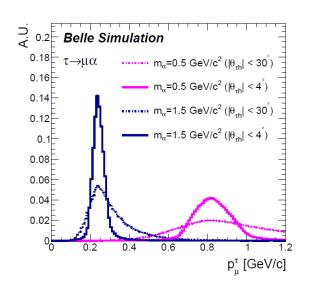

Combined data set of Belle (980 fb⁻¹) + Belle II (428 fb⁻¹) $= 1408 \text{ fb}^{-1} (1.3 \times 10^9 \tau \tau)$

- One-prong tag approach
- Main BG is low-multiplicity QED process for eKs and $e^+e^-\rightarrow qq$ for μKs
- Optimized selection for each signal and tag mode
 - For Belle and Belle II separately
 - Data-driven selections + BDT
- Signal eff.: ~10% for all cases
- Observed 0 event for eKs and 1 event for μKs
- Br< 0.8x10⁻⁸ and 1.2x10⁻⁸ at 90% CL
 - Most stringent upper limits

 $M(\mu K_s^0)$ [GeV/c²]

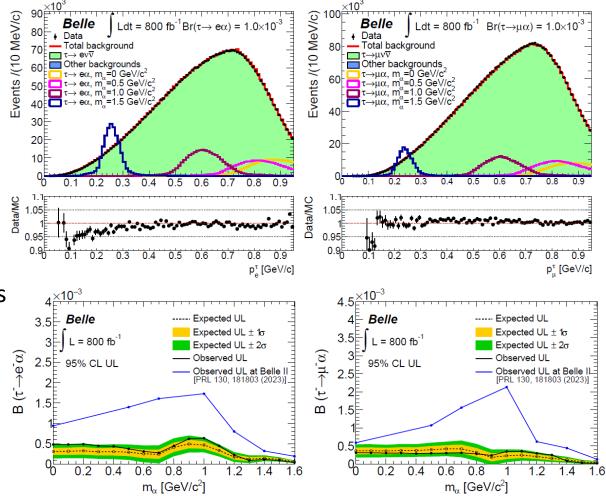


LFV $\tau \rightarrow \ell \alpha$ search

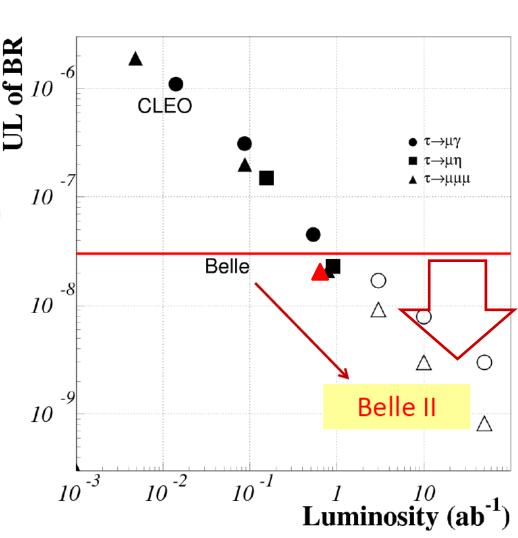

- Search for LFV two-body decay $\tau \to \ell \alpha$ ($\ell = e, \mu$) α is an invisible gauge boson that can be predicted by several new-physics models; LFV Z', light ALP, etc.
- Lepton momentum in signal side is monochromatic at τ_{sig} rest flame, while broad distribution of background $\tau \rightarrow \ell \nu \nu$ decays.
 - Use p_{ℓ}^{τ} for the signal extraction
 - Need tau flight direction to calculate
 - Use hadron direction in tag side as the tau direction
- Calculate the angle between hadron and primary tau direction, by using hadron momentum/energy.

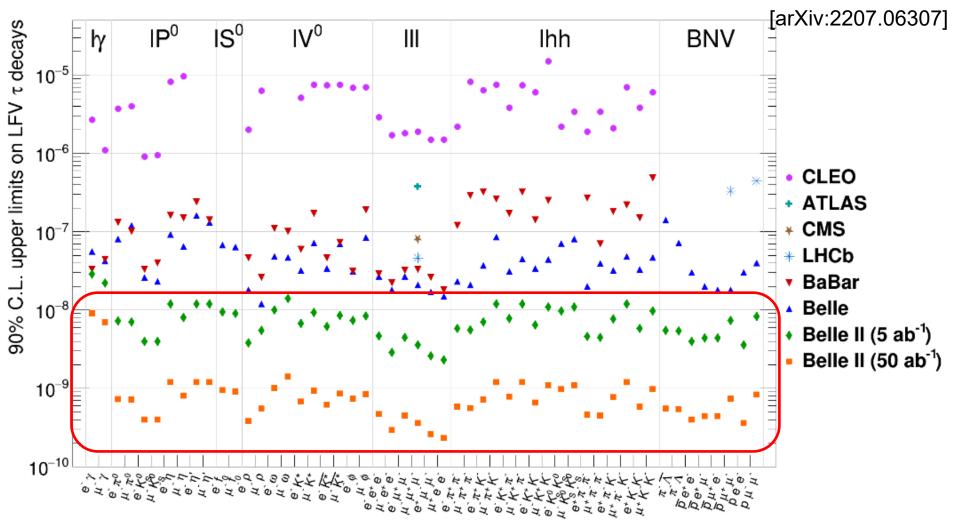
$$\theta_{\tau h} = \arccos\left(\frac{|\vec{p}_{\tau_{\text{tag}}}^{\text{ c.m.}}|^2 + |\vec{p}_{h_{\text{tag}}}^{\text{ c.m.}}|^2 - (\sqrt{s}/2 - E_{h_{\text{tag}}}^{\text{ c.m.}})^2}{2|\vec{p}_{\tau_{\text{tag}}}^{\text{ c.m.}}||\vec{p}_{h_{\text{tag}}}^{\text{ c.m.}}|}\right)$$

• By requiring a selection on $\theta_{\tau h}$, we can improve $p_{e^{\tau}}$ resolution.



LFV $\tau \rightarrow \ell \alpha$ search

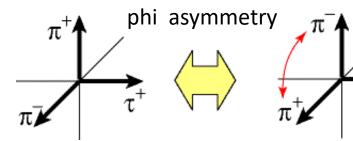

- Two-body signal decay will appear as a bump on the three-body $\tau \to \ell \nu \nu$ decay in the p_{ℓ}^{τ} distribution.
- Selection criteria are independent of α mass.
 - Detection efficiencies are 0.3–1.5% depending on α mass
- No bump seen using 7.4x10⁸ tau pairs by Belle
- Set 95% C.L. upper limits
 - Most stringent limit

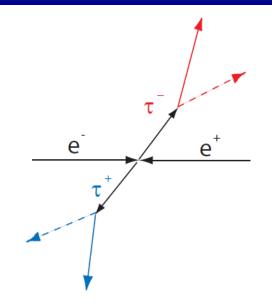

Prospects at Belle II

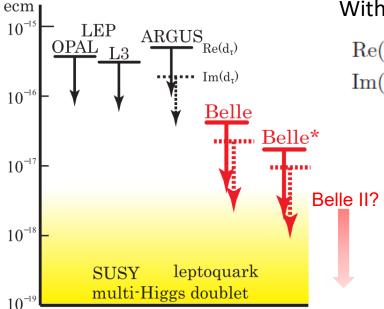
- Will collect 50ab⁻¹ data, with upgrading detector and accelerator
- $B(\tau \rightarrow \mu \mu \mu) \sim O(10^{-10})$ at $\sim 50 ab^{-1}$
- Background suppression with high signal efficiency is key issue.
 - Understanding of background (beam BG, fake PID etc.)
 → Improvement of reconstruction algorisms
 - Intelligent event selection by machine learning technique

Prospects at Belle II

- Estimates assuming the background level scaled by luminosity
 - Recent analyses have already improved the S/N.
- Belle II will push the sensitivity down to $O(10^{-9 \to 10})$ at 5 \to 50 ab⁻¹


- Belle / Belle II experiments are producing more results on tau LFV searches.
 - Achieving the branching ratio sensitivity of 1×10^{-8} for $\tau \to \ell \ell \ell$, ℓKs
 - Improved sensitivity of $\tau \rightarrow \ell \alpha$ search
 - New results using improved detector understandings and intelligent analysis with machine-learning techniques.
- Belle II experiment
 - Achieved world record peak luminosity; $L = 5.1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
 - Accelerator tuning is in progress, and more data will be recorded.
- Belle II will collect $^{5}x10^{10} \tau$ pairs
 - Tau LFV searches will reach the higher sensitivity compared to the previous experiments
 - The background free modes, such as $\tau \rightarrow 3$ leptons, can be reached to O(10⁻¹⁰) branching ratio sensitivity.
 - We can perform more precise analysis also on B-meson decays, tau hadronic decays, CPV/EDM, b/c-hadron resonances etc.




Electric dipole moment of τ lepton

CP violating decay angular distribution

$$\mathcal{L}_{\text{eff}} = \bar{\psi}(i \not \partial - eQ \not A)\psi - \frac{i}{2}\bar{\psi}\sigma^{\mu\nu}\gamma_5\psi d_{\tau}F_{\mu\nu}$$

With Belle's 833 fb⁻¹ data (\sim 7.6x10⁸ τ pairs)

$$\operatorname{Re}(d_{\tau}) = (-0.62 \pm 0.63) \times 10^{-17} \text{ ecm},$$

 $\operatorname{Im}(d_{\tau}) = (-0.40 \pm 0.32) \times 10^{-17} \text{ ecm}.$ at 95% C.L.

[JHEP 2204, 110 (2022)]

Sensitivity of O(10⁻¹⁹) ecm can be achievable in near future, by improving analysis method.