







# The Electron g-2 as a Precision Test of QED and a Probe of New Physics

Makiko Nio (RIKEN & Saitama U) SSP2025, Nara, Japan September 23 – 28, 2025

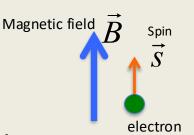
Based on

long-term collaboration of AHKN: T. Aoyama, M. Hayakawa, T. Kinoshita (Cornell U), and M. Nio

Phys. Rev. D **111**, L031902, arXiv:2412.06473 w/ T. Aoyama(U Tokyo), M. Hayakawa(Nagoya U & RIKEN), A. Hirayama(Saitama U)

The QED section of the muon g-2 in the SM: an update, White Paper 2025, arXiv:2025.21476 w/ T. Aoyama, M. Hayakawa, and S. Volkov(MPI)

## Electron g-2



Magnetic moment of a point-like Dirac fermion

$$H = -\vec{\mu} \cdot \vec{B} \qquad \vec{\mu} = g \frac{e\hbar}{2m} \frac{\vec{s}}{\hbar}$$

dimensionless constant

Relativistic QM Dirac equation  $(i\gamma^{\mu}\mathcal{D}_{\mu}-m)\psi=0$ 

$$g = 2$$

Particles can exist
in a very short time period
Fluctuation of vacuum

QED 
$$\mathcal{L}_{ ext{QED}} = ar{\psi} (i \gamma^{\mu} \mathcal{D}_{\mu} - m) \psi$$
  $g = 2 (1 + 0.00116 \dots)$ 

$$a \equiv \frac{g-2}{2}$$

Anomalous magnetic moment

## Precision tests of g-2 in 1948

#### New physics was QED!

4.2%



P. Kusch

Experiment: Ga and Na atom hfs spectra

$$a_e = 0.001 \ 19 \pm 0.000 \ 05$$

if the orbital g factor  $g_l = 1$ 



J. Schwinger

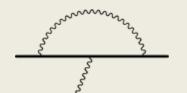
Theory: QED 2<sup>nd</sup>-order (1 loop)

$$e = \frac{\alpha}{2\pi}$$

$$= 0.001 \ 162 \cdots$$

with the fine-structure constant

$$1/\alpha = 137.035...$$



#### Electron g-2 Penning Trap measurement in 2022

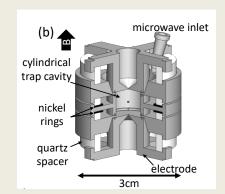
arXiv: 2209.13084, PRL130,071801(2023)

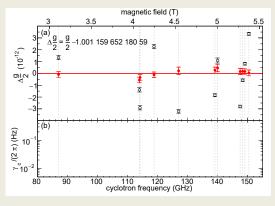
Fan, Mayers, Sukra, and Gabrielse, Northwestern U

$$a_e(\text{NW22}) = 1159652180.59(13) \times 10^{-12}, \ \underline{0.11\text{ppb}}$$

$$a_e(\text{HV08}) = 1159652180.72(28) \times 10^{-12}, \quad 0.24\text{ppb}$$

2.2 times better than beforedifferent values of magnetic fieldsless systematic uncertainty





### Electron g-2 in Standard Model $a_e = +0.00116 \cdots$

0.11ppb

#### Standard-Model prediction of the electron g-2

$$a_e(SM) = a_e(QED) + a_e(hadron) + a_e(weak)$$

The electron is the lightest charged lepton, 0.51 MeV/c<sup>2</sup>

|          | Particles involved                                                          | Percentage to the total contribution |
|----------|-----------------------------------------------------------------------------|--------------------------------------|
| QED      | photon ( $\gamma$ ), electron(e), muon( $\mu$ ), tau-lepton( $\tau$ )       | $999999998.48\times10^{-9}$          |
| Hadronic | e, γ<br>quarks and gluons as hadrons,                                       | $1.49 \times 10^{-9}$                |
| Weak     | e, $\gamma$ , quarks or hadrons, Higgs weak bosons (W $^{\pm}$ , Z $^{0}$ ) | $0.03 \times 10^{-9}$                |
| SM       |                                                                             | 1                                    |

dominant

#### QED contribution to g-2

precision required < 0.1 ppb

#### QED contribution to the electron g-2

g-2 is a dimensionless number, and mass appears in the form of a ratio

$$a_e(\text{QED}) = A_1 + A_2 \left(\frac{m_e}{m_\mu}\right) + A_2 \left(\frac{m_e}{m_\tau}\right) + A_3 \left(\frac{m_e}{m_\mu}, \frac{m_e}{m_\tau}\right)$$

QED perturbation theory as a power series of the fine-structure constant  $\alpha$ :

$$A_i = \left(\frac{\alpha}{\pi}\right) A_i^{(2)} + \left(\frac{\alpha}{\pi}\right)^2 A_i^{(4)} + \left(\frac{\alpha}{\pi}\right)^3 A_i^{(6)} + \cdots$$

Need up to the 10<sup>th</sup>-order, since  $(\alpha/\pi)^5/a_e \sim 0.058 \times 10^{-9}$ 

## Status of the QED electron g-2 calculations

| Order of perturbation 2n | $A_1^{(2n)}$                                     | $A_2^{(2n)}(m_e/m_\mu)$                          | $A_2^{(2n)}(m_e/m_\tau)$ | $A_3^{(2n)}$         |
|--------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------|----------------------|
| 2                        | analytic 1948                                    | 0                                                | 0                        | 0                    |
| 4                        | analytic 1957-1958                               | analytic 1966                                    | analytic 1966            | 0                    |
| 6                        | analytic 1996                                    | analytic 1993                                    | analytic 1993            | analytic 1999        |
| 8                        | almost analytic 2017                             | analytic 2013                                    | analytic 2013            | analytic 2013        |
| 10                       | numerical 2012 –<br>partially double-<br>checked | numerical 2012 –<br>partially double-<br>checked | not yet<br>Too small     | not yet<br>Too small |

 $A_1^{(10)}$  is the only relevant but unchecked term until 2024

Analytic results:

## $10^{th}$ -order QED g-2 $A_1^{(10)}$

#### AHKN's calculation of $A_1^{(10)}$

- <u>arXiv:2012.5368, 2012.5380</u> Phys. Rev. Lett.109, 11708 & 11809 (2012)
- several updates on Set V latest is AHKN2019 Atoms 7(1), 28 (2019)
- S. Volkov's calculation of  $A_1^{(10)}$
- arXiv:1909.08015 Phys. Rev. D 100, 096004 (2019)

  Diagrams of Set V without fermion loop

  discrepancy 4.8σ from the AHKN 2019 result

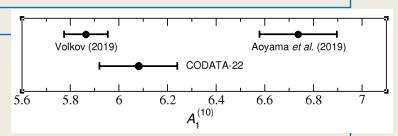
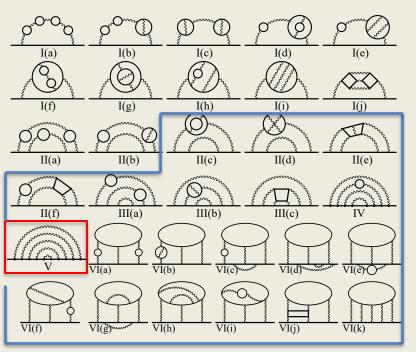


Fig.2, CODATA22, 2024

arXiv:2404.00649 Phys. Rev. D 110, 036001 – Published 2 August 2024
 Diagrams w/ fermion loop agree with the AHKN 2012 results
 Set V discrepancy 4.6σ from the AHKN 2019 result

See the poster at the entrance hall

## 10<sup>th</sup>-order diagrams • 12,672 vertex diagrams over 32 Sets



31 Sets w/ fermion loop (6,318 diagrams) I(a-j), II(a,b) were already confirmed S. Lapota (1994)

P. A. Baikov, A. Maier, and P. Marquard (2013)

#### agreement between AHKN and Volkov

Volkov2024 AHKN2018

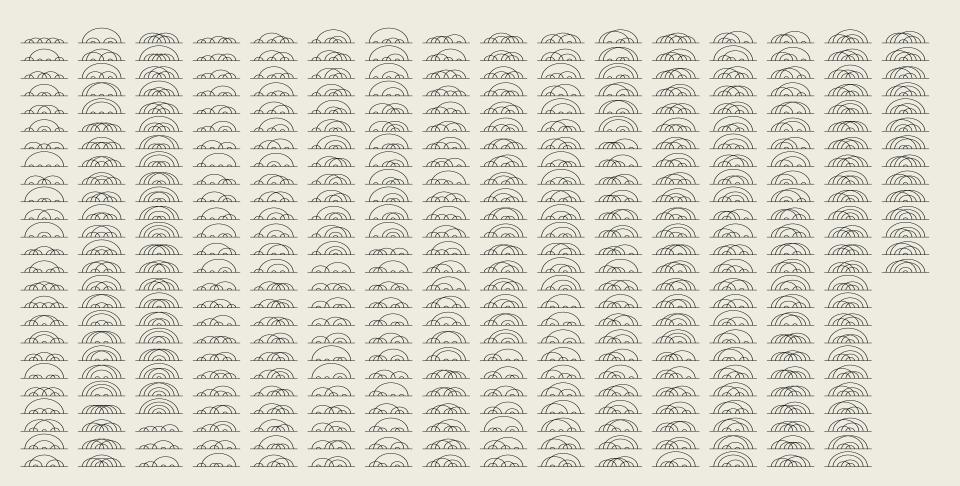
$$-0.9304(36) - \{-0.9377(35)\} = 0.0073(50)$$

Set V w/o fermion loop (6,354 diagrams) **AHKN2019** Volkov

$$7.668 (159) - \begin{cases} 6.793 (90) = 0.875 (182), & 4.8\sigma (2019) \\ 6.857 (81) = 0.811 (178), & 4.6\sigma (2024) \end{cases}$$

Double-checked in 2024

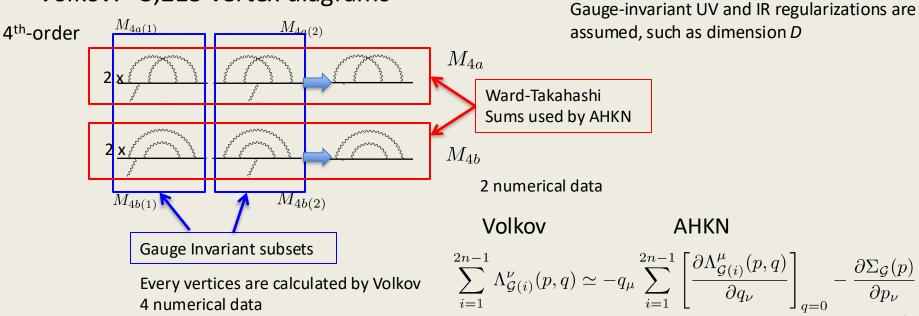
Set V 6,354 vertex diagrams represented by 389 self-energy diagrams



#### Set V: Ward-Takahashi sum v.s. Vertices

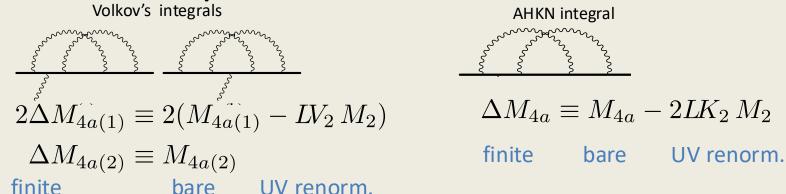
AHKN: 389 Ward-Takahashi sums of v-diagrams Thanks to the U(1) gauge invariance of QED

Volkov: 3,213 vertex diagrams



The WT-sum of Volkov's integrals does not match the AHKN integral. Why not?

#### Connection b/w Volkov and AHKN



With gauge-invariant regularization, the WT-identity guarantees

$$2M_{4a(1)} + M_{4a(2)} = M_{4a}$$

Thus, we have the connection

$$\Delta M_{4a} - (2\Delta M_{4a(1)} + \Delta M_{4a(2)}) = 2~\delta L_2~M_2$$
 AHKN's integral Volkov's integrals gap equation

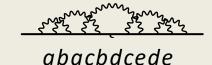
where 
$$\delta L_2 \equiv LV_2 - LK_2$$

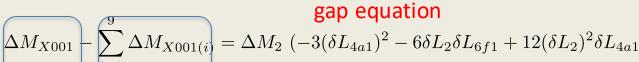
difference of renormalization constants

#### X001 as an example

**Numerical** 

integrals





$$+ \Delta M_{4a} \left( 2\delta L_{6f1} - 6\delta L_2 \delta L_{4a1} + 4(\delta L_2)^3 \right)$$

l.h.s 
$$= -0.16083 (334) - 0.58095 (534)$$

$$=-0.74178 (630)$$

r.h.s 
$$= -0.73854...$$

$$l.h.s - r.h.s = -0.00324 (630)$$

Substitute numerical values for lower-order symbols

A. Hirayama, JPS 2021 spring meeting

X001 safely passes the numerical check
Both AHKN and Volkov correctly calculated X001

All X001 – X389 pass the check

|                                    |             | •                                                             |              | aimost u         |
|------------------------------------|-------------|---------------------------------------------------------------|--------------|------------------|
| $\overline{ m Diagram} \ {\cal G}$ | Expression  | $\Delta M_{\mathcal{G}} - \sum_{i} \Delta M_{\mathcal{G}(i)}$ | Gap Equation | Difference       |
| X001                               | abacbdcede  | -0.7418                                                       | -0.7385      | -0.0033(63)      |
| X002                               | abaccddebe  | 8.0130                                                        | 8.0253       | -0.0123(139)     |
| X003                               | abacdbcede  | 2.0226                                                        | 2.0221       | $0.0006(29)^{2}$ |
| X004                               | abacdcdebe  | -6.5041                                                       | -6.5146      | 0.0104(130)      |
| X005                               | abacddbece  | -0.2680                                                       | -0.2789      | 0.0110 (106)     |
| X006                               | abacddcebe  | 0.5522                                                        | 0.5522       | -0.0000(125)     |
| X007                               | abb cadceed | -0.2365                                                       | -0.2250      | -0.0115(128)     |
| X008                               | abbccddeea  | -3.8164                                                       | -3.8115      | -0.0050(168)     |
| X009                               | abbcdaceed  | 0.1962                                                        | 0.2050       | -0.0089(69)      |
| X010                               | abbcdcdeea  | -1.4020                                                       | -1.4014      | -0.0007(137)     |
| X011                               | abbcddaeec  | -0.6609                                                       | -0.6645      | 0.0035(110)      |
| X012                               | abbcddceea  | -0.4561                                                       | -0.4717      | 0.0156(129)      |
| X013                               | abcabdecde  | 1.7891                                                        | 1.7879       | 0.0012(14)       |
| X014                               | abcacdedbe  | 0.2015                                                        | 0.2018       | -0.0003(32)      |
| X015                               | abcadbecde  | 1.1125                                                        | 1.1141       | -0.0016(6)       |
| X016                               | abcadced be | -0.4574                                                       | -0.4567      | -0.0007(5)       |
| X017                               | abcaddebce  | -0.7935                                                       | -0.7966      | 0.0030(15)       |
| X018                               | abcaddecbe  | -0.4154                                                       | -0.4194      | 0.0040(17)       |
| X019                               | abcbadeced  | 2.3984                                                        | 2.3968       | 0.0016(31)       |
| X020                               | abcbcdedea  | 7.6668                                                        | 7.6799       | -0.0131(131)     |
| X021                               | abcbdaeced  | 0.3403                                                        | 0.3408       | -0.0005(16)      |
| X022                               | abcbdcedea  | -1.1144                                                       | -1.1238      | 0.0094(114)      |
| X023                               | abcbddeaec  | -0.4987                                                       | -0.5074      | 0.0087(58)       |
| X024                               | abcbddecea  | 4.5369                                                        | 4.5595       | -0.0226(131)     |
| X025                               | abccadeebd  | 2.4091                                                        | 2.4333       | -0.0242(119)     |
| X026                               | abccbdeeda  | 1.2078                                                        | 1.2042       | 0.0035(110)      |
| X027                               | abccdaeebd  | -0.2238                                                       | -0.2272      | 0.0034 (46)      |

and 262 more 0/s

Both AHKN and Volkov correctly formulated the Set V integrals.

## Why did the discrepancy arise?

- The differences range from -0.03 to + 0.03
- Not randomly distributed → Bias in numerical integration
   # of negative differences << # of positive differences</li>
- We divided 389 self-energy diagrams into 4 classes

| Diagrams w/o a self-energy subdiagram                   | XL    | 135 |             |
|---------------------------------------------------------|-------|-----|-------------|
| Diagrams w/ one 2 <sup>nd</sup> -order self-energy subd | XB1B2 | 98  | The culprit |
| Diagrams w/ two 2 <sup>nd</sup> -order self-energy subd | XB2B2 | 33  |             |
| Others                                                  |       | 123 |             |

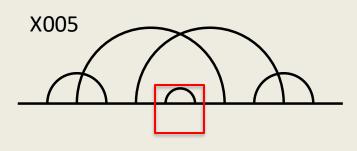
## XB1B2 98 SE diagrams

Differences are positive for 90 diagrams negative for 8 diagrams

$$\sum_{G} (\Delta M_G - \sum_{i=1}^{9} \Delta M_{G(i)}) = -49.095 (73)$$

$$\sum$$
 the gap equation for  $G = -50.089$ 

$$\sum differences = +0.994(73)$$



2<sup>nd</sup>-order s.e. subdiagram

AHKN is bigger than the answer

OR

Volkov is smaller than the answer

This accounts for the discrepancy between AHKN and Volkov of Set V

$$7.668 (159) - \begin{cases} 6.793 (90) \\ 6.857 (81) \end{cases} = 0.875 (182), \quad 4.8\sigma (2019) \\ 0.811 (178), \quad 4.6\sigma (2024) \end{cases}$$

### Re-evaluation of the 98 integrals of AHKN

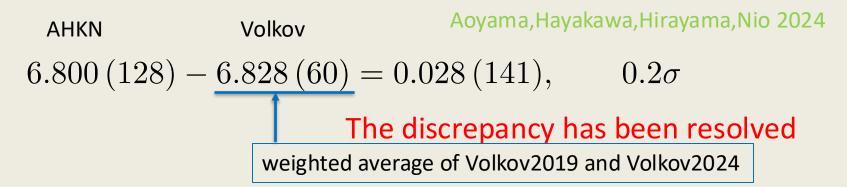
Numerical calculations, December 2023 – April 2024 @HOKUSAI-BW2, RIKEN during the 4-month test operation period

- 12dim. Monte-Carlo integration with the algorithm VEGAS used for previous works
- Quasi double-double-precision calculation
- Statistics of sampling points increased from O(10^9) to O(10^10)
- ~ 3.2 x 10^7 core-hours (133 days with 10,000 cores)

$$\sum_{G} \Delta M_{G} = 57.806 \, (64) \longrightarrow 57.002 \, (33), \, \boxed{-0.803 \, (72)}$$

### Updated Set V result

If 98 integrals of XB1B2 are replaced by the new results,



- The 98 integrals of XB1B2 are relatively easy to evaluate
- Calculated around 2008 2012, more than a decade ago
- The # of samplings for Monte Carlo integration was not sufficient

# Summary of the QED A<sub>1</sub><sup>(10)</sup>

|                         | AHKN        | Volkov      |
|-------------------------|-------------|-------------|
| $A_1^{(10)}[{ m SetV}]$ | 6.800(128)  | 6.828 (60)  |
| $A_1^{(10)}$ [others]   | -0.9304(36) | -0.9377(35) |
| $A_1^{(10)}[all]$       | 5.870(128)  | 5.891(61)   |

Set V 6,354 diagrams with no fermion loop others 6,318 diagrams with at least one fermion loop all sum of the above, 12,672 diagrams

AHKN and Volkov have agreed to present the weighted average

$$A_1^{(10)} = 5.877(55)$$

Aoyama, Hayakawa, Nio, and Volkov, in the QED section of the muon g-2 WP25

## Theory of Electron g-2

$$a_e = +0.00116 \cdots$$

0.11ppb

#### Standard-Model prediction of the electron g-2

$$a_e(SM) = a_e(QED) + a_e(hadron) + a_e(weak)$$

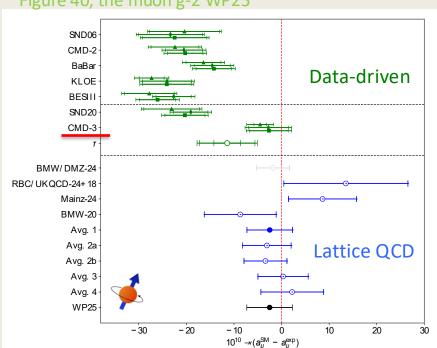
The electron is the lightest charged lepton, 0.51 MeV/c<sup>2</sup>

|          | Particles involved                                                    | Percentage to the total contribution |
|----------|-----------------------------------------------------------------------|--------------------------------------|
| QED      | photon ( $\gamma$ ), electron(e), muon( $\mu$ ), tau-lepton( $\tau$ ) | $999999998.48\times 10^{-9}$         |
| Hadronic | e, γ<br>quarks and gluons as hadrons,                                 | $1.49 \times 10^{-9}$                |
| Weak     | e, $\gamma$ , quarks, Higgs(H) weak bosons (W $^{\pm}$ , Z $^{0}$ )   | $0.03 \times 10^{-9}$                |
| SM       |                                                                       | 1                                    |



## Hadronic contribution to the muon g-2

Figure 40, the muon g-2 WP25



The same HVP data  $a_e^{\mathrm{HVP,\ LO}}$ can be used to calculate

$$a_l^{\rm HVP,\;LO} = \frac{\alpha^2}{3\pi^2} \int_{m_\pi^2}^\infty \frac{ds}{s} R(s) K_l(s)$$
 HVP data lepton-mass dependence

Leading order hadronic vacuum-polarization (HVP, LO)  $a_{\cdot \cdot}^{\text{HVP, LO}}$ contribution to the muon g-2

#### HVP, LO to the electron g-2

#### Three calculations so far

$$a_e^{\rm HVP,\ LO} = \begin{cases} 1.861\,(7)\times 10^{-12} \\ 1.920\,(9)\times 10^{-12} \end{cases}$$
 (1) Data-driven w/o CMD-3 Keshavarzi, Nomura, Teubner 2019 (2) Data-driven w/ CMD-3  $\pi\pi$  channel Di Luzio, Keshavarzi, Masiero, Paradisi 2024 (3) Lattice QCD

- Budapest-Marseille-Wuppertal (BMW) 2017

El-Khadra and Hoferichter, personal communication, 2025

#### Suggestions from the QCD researchers of the muon g-2 WP25:

- Average (1) and (2), and assign half of the difference to the uncertainty
- The uncertainty of Lattice QCD is too large. It is just a reference

We took

$$a_e^{\text{HVP, LO}} = 1.89(3) \times 10^{-12}$$

#### The fine-structure constant $\alpha$ from the electron g-2

Assume that the SM is correct

$$a_e^{\text{exp}}(\text{NW22}) = a_e^{\text{SM}}[\alpha]$$

Experiment

 $\alpha$  is the only unknown in SM theory

Solve  $\alpha$ 

$$lpha^{-1}(a_e) = 137.035\,999\,163\,(15) - 0.11\,\mathrm{ppb}$$
 Experiment NW22 only

| cause of change                          | shift in α <sup>-1</sup> | uncertainty           |
|------------------------------------------|--------------------------|-----------------------|
| QED 10 <sup>th</sup> -order $A_1^{(10)}$ | $-6.8 \times 10^{-9}$    | $0.44 \times 10^{-9}$ |
| Hadron VP $a_e^{ m HVP,LO}$              | $+3.4 \times 10^{-9}$    | $3.6 \times 10^{-9}$  |

#### non-QED values of the fine-structure constant α

• h/M of Cs or Rb using an atom interferometer

$$\alpha = \left[\frac{h}{M} \times \frac{A_r(M)}{A_r(m_e)} \times \frac{2R_\infty}{c}\right]^{1/2}$$

least precise

h/
$$M_{\text{Cs}} = 3.0023694721(12) \times 10^{-9} \,\text{m}^2\text{s}^{-1}$$
  
h/ $M_{\text{Rb}} = 4.59135925890(65) \times 10^{-9} \,\text{m}^2\text{s}^{-1}$ 

 $R_{\infty} = 10\,973\,731.568\,157(12)\,\mathrm{m}^{-1}$  1.1 ppt  $A_r(e) = 5.485\,799\,090\,441\,(97)\times10^{-4}\,\mathrm{u}$  18 ppt

$$A_r(e) = 5.485799090441(97) \times 10^{-4} \text{ u}$$
 18 ppt  
 $A_r(M_{\text{Cs}}) = 132.9054519585(86) \text{ u}$  65 ppt  
 $A_r(M_{\text{Rb}}) = 86.9091805291(65) \text{ u}$  75 ppt

$$\alpha^{-1}(Cs) = 137.035999045(27)$$
 0.20 ppb  $\alpha^{-1}(Rb) = 137.0359992052(97)$  0.071 ppb  $\alpha^{-1}(a_e) = 137.035999163(15)$  0.11 ppb

 $\begin{array}{c|c}
x & \frac{\pi}{2} & \frac{\pi}{2} \\
\hline
t_1 & t_2 & t_3 \\
\hline
t_4 & t_4 \\
\hline
\frac{\pi}{2} & \frac{\pi}{2} & \frac{\pi}{2}
\end{array}$ arXiv:2403.10225

 $0.40\,\mathrm{ppb}$ 

 $0.14\,\mathrm{ppb}$ 

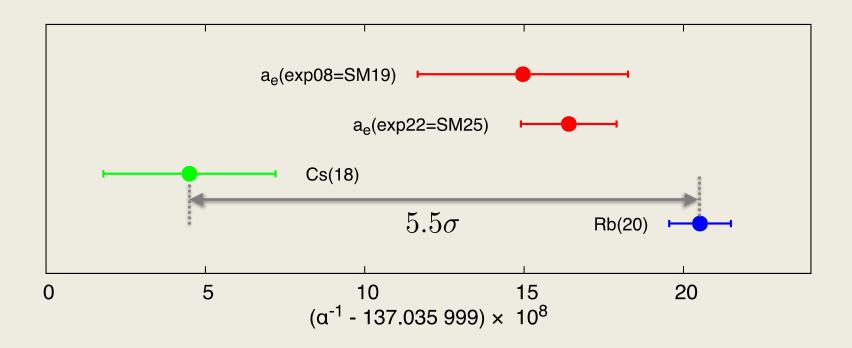
Parker et al, UC Berkley 2018

Morel et al, LKB Paris 2020

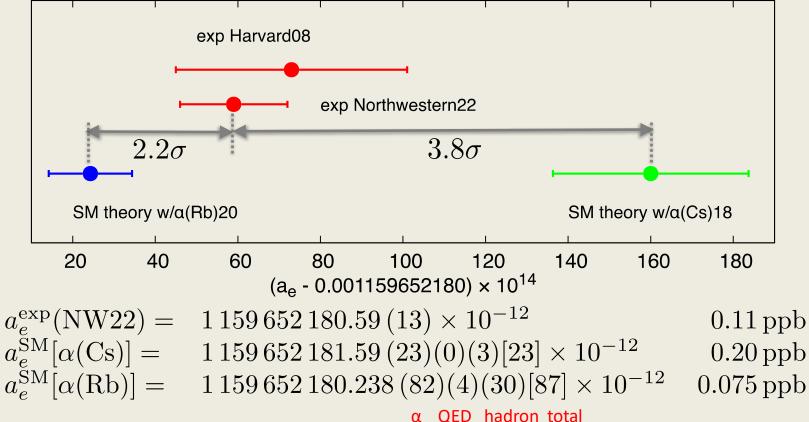
CODATA 2022, 2024

as a reference

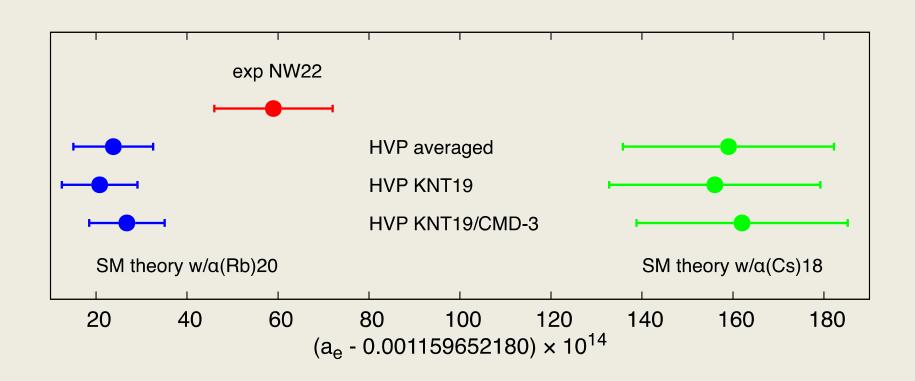
#### Three values of the fine-structure constant $\alpha$



# Electron g-2 Theory v.s. Experiment

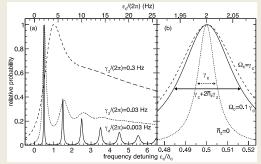


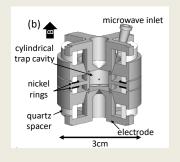
# Effects of the HVP, LO $a_e^{ m HVP,LO}$ on the SM theory



## Prospects on the electron g-2 experiment

- positron g-2 measurement
- electron g-2 measurement



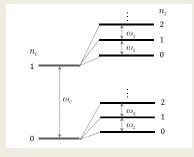




Cyclotron motion is in the ground state

Axial motion is **NOT** in the ground state

→ Source of the systematic error



 cooling axial motion, quantum measurement could not be realized in the NW22 measurement X. Fan and G. Gabrielse arXiv:2008.01898,PRL 2021

A factor 10 ~ 20 improvement can be expected

## Prospects on the electron g-2 theory

The crucial input number, the fine-structure constant α
 need to be improved from 0.1 ppb to 0.01 ppb
 h/m\_X, X=Cs (UC Berkley), Rb (or Sr) (LKB Paris), and Sr and/or Yb (Oxford U, 2024)
 A<sub>r</sub>(m\_Rb) ... its uncertainty is just half of h/m\_Rb
 75 ppt
 140 ppt

QED calculations

The discrepancy in the universal term  $A_1^{(10)}$  has been resolved Further independent checks are needed for the mass-dependent term  $A_2^{(10)}$ Preparation of the 12<sup>th</sup>-order QED is in progress 202,770 Feynman diagrams

quenched lattice QED Kitano et al. 2021,2022, Kitano 2024
diagrams with fermion loops Yamazaki, master thesis, Saitama University 2023

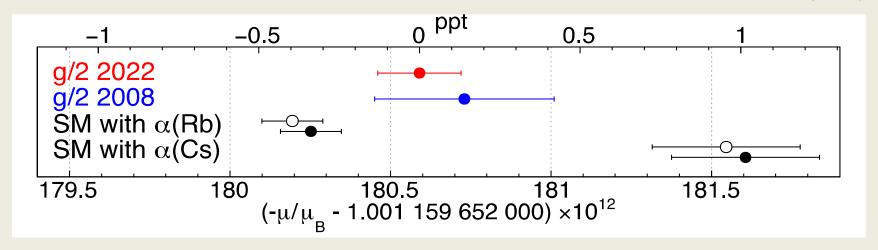
Hadronic contributions ???
 Open questions both experimentally and theoretically



# backup

#### Effects of two QED results of the 10<sup>th</sup>-order term

X. Fan, et. al. arXiv: 2209.13084, PRL130, 071801(2023)



- QED 10<sup>th</sup>-order term from AHKN 2019
- QED 10<sup>th</sup>-order term from S. Volkov 2019

The difference is **not crucial** right now, but must be resolved.

#### Other non-QED but SM corrections

$$a_e^{\rm HVP, \ NLO} = -0.2263 \, (35) \times 10^{-12} \qquad \begin{array}{l} {\rm Keshavarzi, \ Nomura, \ Teubner \ 2019} \\ {\rm Di \ Luzio, \ Keshavarzi, \ Masiero, \ Paradisi \ 2024} \\ {\propto \alpha^3} \\ a_e^{\rm HVP, NNLO} = 0.027 \, 99 \, (17) \times 10^{-12} \\ a_e^{\rm HLbL} = 0.0351 \, (23) \times 10^{-12} \\ a_e^{\rm EW} = 0.030 \, 53 \, (23) \times 10^{-12} \\ \end{array}$$

Corrections involving weak bosons Z and W

#### Different renormalization schemes

On-shell renormalization constants for a self-energy diagram *G*:

 $L_{G(i)}$  for vertex renormalization

 $B_G$  for wave-function renormalization

Volkov: IR-free, Ward-Takahashi identity holds: 2n-1

$$BV_G + \sum_{i=1}^{n} LV_{G(i)} = 0$$

AHKN: IR free, easy-to-determine, but breaking WT-identity:

$$BK_G + \sum_{i=1}^{2n-1} LK_{G(i)} + \Delta LB_G = 0$$
 Finite renormalization

Restore the gauge invariance

### Numerical calculation of $\delta L_{G(i)}$

Difference of vertex renormalization constants numerically calculated for n=1, 2, 3, 4 loops

(#) # of independent diagrams

| Order 2n                | 2    | 4     | 6         | 8         |
|-------------------------|------|-------|-----------|-----------|
| # of vertex<br>diagrams | 1    | 6 (4) | 50 (38)   | 518 (269) |
| dimension of integrals  | 1dim | 4 dim | 7 dim _ { | 10 dim    |

$$\delta L_{G(i)} = \left(1 + \sum_{f} \left[\prod_{S_i \in f} (-\mathbb{K}_{S_i})\right]\right) (LV_{G(i)} - LK_{G(i)})$$

269 x 1 hour x 40 core  $\sim$  10,000 core x hours UV subtraction w/ AHKN's K-operation easy calculation compared to the 10<sup>th</sup>-order g-2

# To-do list for a diagram-by-diagram comparison

To compare AHKN and Volkov's numerical results of integrals,

- Obtain the symbolic expressions of the gap equations expressed by  $~\delta L~{
  m and}~\Delta M_G$  of the 2<sup>nd</sup> ~ 8<sup>th</sup> order quantities
- Calculate the values of  $\delta L$   $\Delta M_G$  are known from AHKN's old publications.
- The difference of numerical integrals is compared to the numerical values of the gap equation.