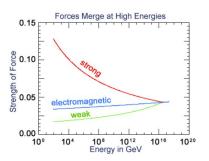
Searches for Nucleon Decay and Baryon Number Violation with Super-Kamiokande Experiment

Volodymyr Takhistov

(QUP & Theory Center, KEK & SOKENDAI & Kavli IPMU, U. Tokyo)

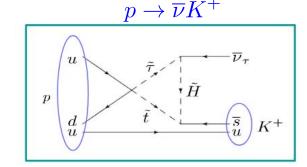
for the Super-Kamiokande Collaboration



Do protons decay?

- Lightest baryon (proton) stable
- B-number proposed to explain matter stability [Weyl, 1929; Stueckelberg, 1939; Wigner, 1949]
- In Standard Model (SM) B not fundamental, accidental global symmetry
 ... long history of such symmetries later found violated (e.g. C, P)
- Already in SM B is violated by non-perturbative effects [t'Hooft, 1976]
- SM incomplete, B viol. in many theories (baryogenesis, GUTs, SUSY, extra-dim...)
- Global symmetries expected to be violated by quantum gravity e.g. [Harlow, Ooguri, 2018]
- Proton decay can be essential for fate of astrophysical objects [Adams, Laughlin, 1997]

Grand Unified Theories (GUTs)


- Unify SM gauge groups [Georgi, Glashow, 1974; Fritzch, Minkowski, 1975] \rightarrow charge quantization, coupling unification, anomaly cancellation...

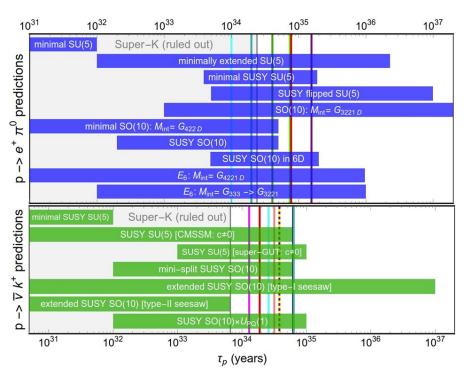
typically dominant:

$$p \to e^+ \pi^0$$

SU(5)

SUSY

SU(5)

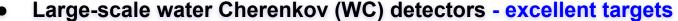

$$au = rac{1}{\Gamma} \propto \left[rac{M_s M_T}{lpha^2}
ight]^2$$

$$au = rac{1}{\Gamma} \propto \left[rac{M_X^2}{lpha^2}
ight]^2$$

- ightarrow prediction $au \sim 10^{29-36} \ {
 m yrs}$
- → minimal model ruled out (IMB-3, Kamiokande, Super-K)
- ightarrow prediction $au \sim 10^{29-36} \ \mathrm{yrs}$
- → minimal (TeV-)SUSY model ruled out by Super-K [Kobayashi+ (SK), PRD, (2005)]

Proton Lifetime Predictions

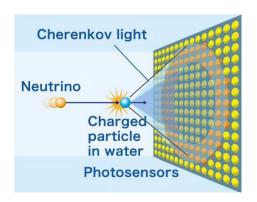
Model	Ref.	Modes	τ_N (years)	
Minimal $SU(5)$	Georgi, Glashow [2]	$p \rightarrow e^+ \pi^0$	$10^{30} - 10^{31}$	
Minimal SUSY SU(5)	Dimopoulos, Georgi [11], Sakai [12]	$p \rightarrow \bar{\nu}K^+$		
	Lifetime Calculations: Hisano,	$n o \bar{\nu} K^0$	$10^{28} - 10^{32}$	
	Murayama, Yanagida [13]			
SUGRA $SU(5)$	Nath, Arnowitt [14, 15]	$p \rightarrow \bar{\nu}K^+$	$10^{32} - 10^{34}$	
SUSY $SO(10)$	Shafi, Tavartkiladze [16]	$p \rightarrow \bar{\nu} K^+$		
with anomalous		$n \to \bar{\nu} K^0$	$10^{32} - 10^{35}$	
flavor $U(1)$		$p \rightarrow \mu^+ K^0$		
SUSY $SO(10)$	Lucas, Raby [17], Pati [18]	$p \rightarrow \bar{\nu}K^+$	$10^{33} - 10^{34}$	
MSSM (std. $d = 5$)		$n \rightarrow \bar{\nu} K^0$	$10^{32} - 10^{33}$	
SUSY $SO(10)$	Pati [18]	$p \rightarrow \bar{\nu} K^+$	$10^{33} - 10^{34}$	
ESSM (std. $d = 5$)	30 400		$\lesssim 10^{35}$	
SUSY $SO(10)/G(224)$	Babu, Pati, Wilczek [19, 20, 21],	$p \rightarrow \bar{\nu}K^+$ $p \rightarrow \mu^+K^0$	$\lesssim 2 \cdot 10^{34}$	
MSSM or ESSM	Pati [18]	$p \rightarrow \mu^+ K^0$		
(new d = 5)		$p \rightarrow e^{+}\pi^{0}$	$\sim (1-50)\%$	
SUSY $SU(5)$ or $SO(10)$	Pati [18]	$p \rightarrow e^+ \pi^0$	$\sim 10^{34.9\pm1}$	
MSSM (d = 6)	36° 0403			
Flipped $SU(5)$ in CMSSM	Ellis, Nanopoulos and Wlaker[22]	$p \rightarrow e/\mu^+\pi^0$ $p \rightarrow e^+\pi^0$	$10^{35} - 10^{36}$	
Split $SU(5)$ SUSY	Arkani-Hamed, et. al. [23]	$p \rightarrow e^+ \pi^0$	$10^{35} - 10^{35}$	
SU(5) in 5 dimensions	Hebecker, March-Russell[24]	$p \rightarrow \mu^+ K^0$	$10^{34} - 10^{35}$	
	100	$p \rightarrow e^+ \pi^0$		
SU(5) in 5 dimensions	Alciati et.al.[25]	$p \rightarrow \bar{\nu} K^+$	$10^{36} - 10^{3}$	
option II				
GUT-like models from	Klebanov, Witten[26]	$p \rightarrow e^+\pi^0$	$\sim 10^{36}$	
Type IIA string with D6-bran	es	200 000.1 00000	0.000.02.00	


Snowmass-2021 Whitepaper [Dev et.al., *J.Phys.G*, 2024]

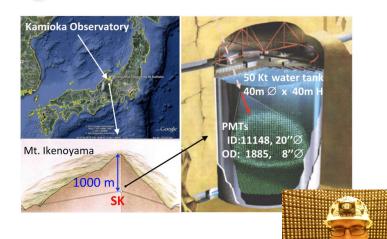
[Bueno+, *JHEP*, 2007]

Significant uncertainties in model predictions, many viable models within experiment reach

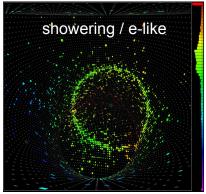
How to search?


- Already in 1950s, Goldhaber argued on general grounds $\tau > 10^{18} \ {\rm yrs}$
 - → Many searches with different methods since
- Proton lives $\tau > 10^{30}$ yrs, how to test?
 - Look at 1 proton VERY long time X
 - Look at many protons for few years

- Cheap, easily scalable (e.g. iron calorimeters are difficult)
- Proven technology
- H₂O includes 2 hydrogen "free protons"
 (high selection efficiency, low uncertainty)

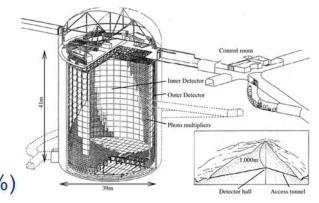


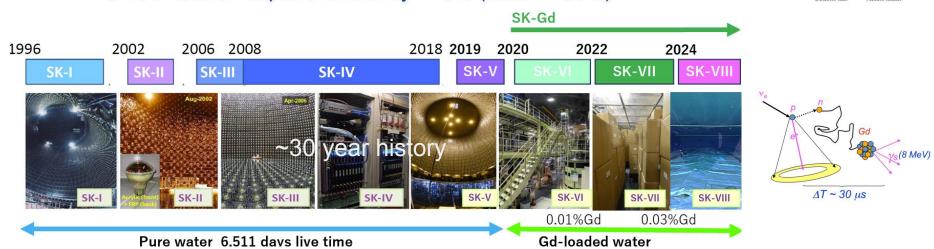
Water Cherenkov Ring Imaging and State-of-the-Art



state-of-the-art

Super-Kamiokande (SK, Super-K)


real SK data (1998)


SK upgrade

work, 2018

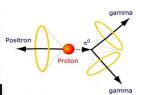
The Super-Kamiokande (SK) Experiment

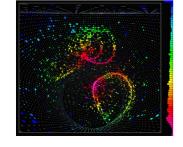
- ~50 kton WC experiment
 - ~22.5 kton target fiducial volume
- 1 km underground (2700 m.w.e.) in Kamioka mine
- Inner (outer) detector: ~11,000 (~2,000) PMTs
- Since ~2020 doped with Gadolinium(Gd), ~0.03 w%
 - SKGd neutron capture efficiency ~75% (water: ~20%)

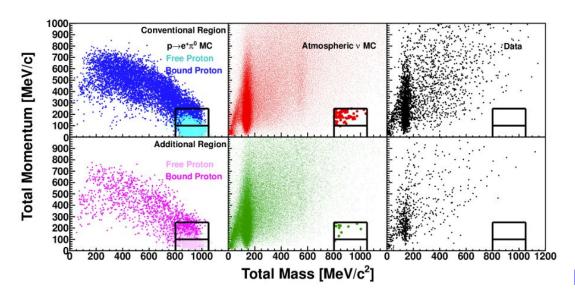
A Multipurpose Discovery Experiment

- Outstanding detector performance
 - Excellent ring-imaging capabilities; proven over 25+ years
 - Particle ID > 99%, energy resolution at 1 GeV ~ percent-level

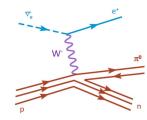
discovery of neutrino oscillations


2015


- Exceptional physics capabilities (energy range: ~ few -10⁴ MeV)
- Precision fundamental v-oscillation studies (atmospheric, accelerator, Lorentz inv., NSI, sterile)
- Precision solar neutrino physics (fluxes, spectral distortions, day/night effect, NSI, g-modes)
- Neutrino astronomy, supernova and beyond (multimessenger, burst, diffuse background, etc.)
- World leading sensitivity to B-violating processes (proton decay, di-nucleon decays, etc.)
- Dark matter searches: indirect (Sun, Earth, Galactic Center), direct (via cosmic-ray boost, etc.)
- Exotic targets (monopoles, Q-balls, millicharge particles, etc.)



$p \rightarrow e^{+}\pi^{0}$ Search

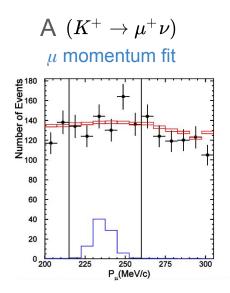

- Motivation: Typically dominant GUT channel
- Final state (positron + 2 gammas) fully visible
 - → can reconstruct proton mass/momentum, clean channel

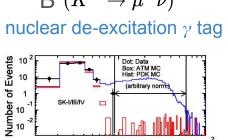
typical atm.-v back. (benefit from n-tag)

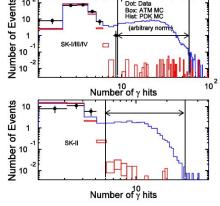
- Exposure: 450 kton*yr
- Signal efficiency: 38.6% (SK I-IV)
- Expected background:

0.05 ev. in $P_{\rm tot} < 100 \ {\rm MeV}$

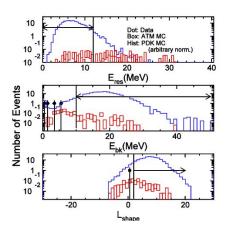
0.58 ev. in $100 \le P_{\rm tot} < 250 \ {\rm MeV}$


No candidates, lifetime limit (90% CL)


[Abe+ (SK), PRD, 2020]


 $> 2.4 \times 10^{34} \ {\rm yrs}.$

p →vK⁺ Search


- **Motivation:** Typically dominant SUSY GUT channel
- Invisible v, can't reconstruct proton mass/momentum
- Momentum of K⁺ ~339 MeV below Cherenkov threshold (invisible) → analyze decays

$\mathsf{B}\;(K^+ o\mu^+ u) \qquad \qquad \mathsf{C}\;(K^+ o\pi^0\pi^+)$ reconstruct pions

combine analyses

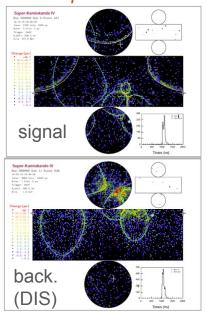
- Exposure: 365 kton*yr

 $K^{+} \rightarrow \nu \mu^{+} : 64 \%$

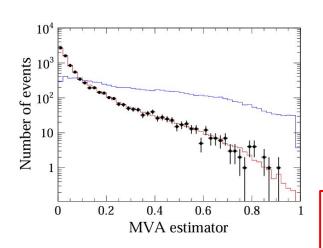
 $K^{+} \rightarrow \pi^{+}\pi^{0}$: 21 %

- Signal eff.: ~10% (SK I-IV)

No excess, lifetime limit (90% CL)


$$> 8.2 imes 10^{33} ext{ yrs.}$$

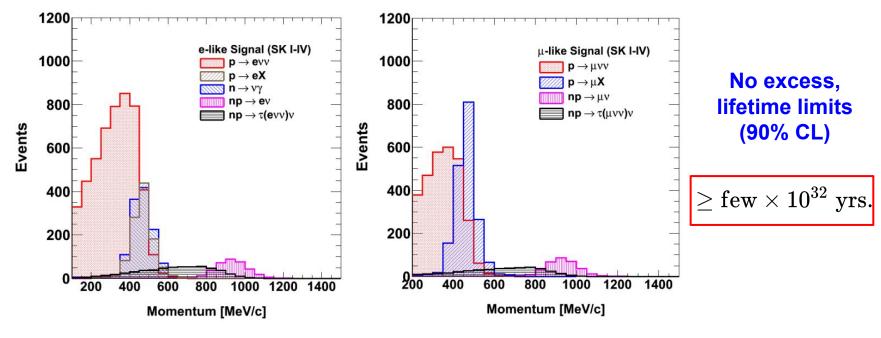
[Abe+ (SK), PRD, 2014] (Updated)


Neutron-Antineutron Oscillations

- **Motivation:** $\Delta B = \Delta (B L) = 2$, neutrino mass connections, new intermediate scales, etc.
- Capture of \overline{n} by ¹⁶O nucleons (n, p) produces mesons (~pions) \rightarrow reconstruct initial state
- Complicated final-state interactions with multi-ring signatures

example simulations

Multivariate analysis allows ~2x sensitivity

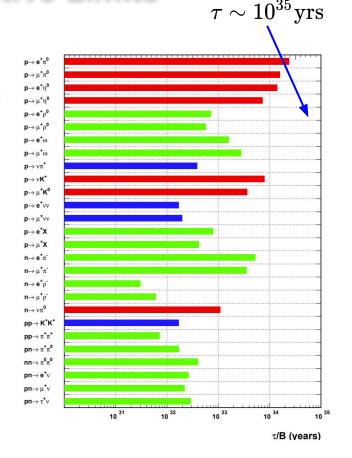

- Exposure: 370 kton*yr
- Signal efficiency: ~4% (SK I-IV, MVA)
- Expected background: 9.3 ± 2.7 ev.
- Observed: 11 ev.

No excess, lifetime limit (90% CL)

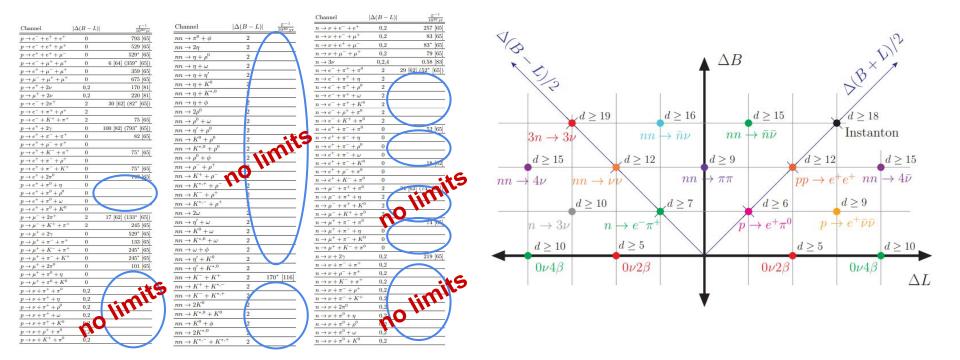
$$\frac{T_{n-\bar{n}}(10^{32} \text{ years}) R (10^{23}/\text{s}) \tau_{n\to\bar{n}}(10^8 \text{ s})}{3.6 \quad 0.517 \quad 4.7}$$

$$T_{n-ar{n}}^{ ext{bound}} = R \cdot au_{n o ar{n}}^2$$

Spectral Searches with Missing Energy


[Takhistov+ (SK), PRL, (2014); Takhistov+ (SK), PRL, (2015); + ongoing analyses]

• Look for visible energy-momentum, distribution important (e.g. v, massless invisible X), highlighted in [Chen, Takhistov, *PRD*, (2014)]


SK Broadly Set Most Sensitive Limits

- SK already broadly probed ~50 channels (including dinucleon decays, decays to >2 final states...)
- Analysis strategy depends on channel specifics
 → visible Cherenkov rings, backgrounds, etc.
- - → <u>leading limits on nucleon decays</u>

... are we done?
No, unexplored frontier ahead!

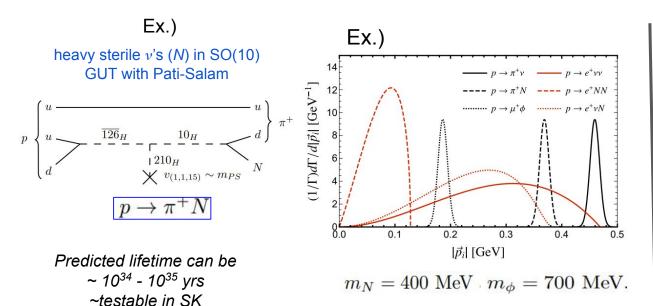
Very Many Channels Never Searched

Not exhaustive list

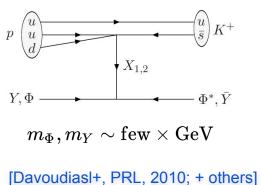
[Heeck, Takhistov, PRD, (2019)]

New Broad Program: Non-Canonical Nucleon Decays

Novel probes of light new physics: axion-like particles, dark photons, sterile ν 's...


0	Operator	$(\Delta B, \Delta L)$	Dim	Decay modes	New Field(s)
\mathcal{O}_{d^2uN}	$\epsilon^{abc} \left(d_a N \right) \left(d_b u_c \right)$	(1, 1)	6	$p(n) \rightarrow \pi^{+(0)}N$	sterile neutrinos
$\mathcal{O}_{Dd^2uar{N}}$	$\epsilon^{abc} \left(d_a \sigma_\mu N^\dagger \right) \left(d_b D^\mu u_c \right)$	(1, -1)	7	$n \to N\gamma$ $p(n) \to \pi^{+(0)}N\gamma$	sterile neutrinos
$\mathcal{O}_{du^2e\phi}$	$\epsilon^{abc} \left(d_a u_b \right) \left(e u_c \right) \phi$	(1, 1)	7	$p \to e^+ \phi$ $p(n) \to e^+ \pi^{0(-)} \phi$	dark scalars, majorons
\mathcal{O}_{d^2QLX}	$\epsilon^{abc} \left(Q_a^i \sigma^\mu d_b \right) \left(d_c L_i^\dagger \right) X_\mu$	(1, 1)	7	$n \to \nu X$ $p \to \nu \pi^{+(0)} X$ $p(n) \to e^{+} \pi^{0(-)} X$	dark photons
$\mathcal{O}_{dQ^2ar{L}ar{H}\phi}$	$\epsilon^{abc} \left(Q_a^i Q_b^j \right) \left(L^_i d_c \right) H_j^\dagger \phi$	(1, 1)	8	$p \to e^+ \phi$ $p(n) \to e^+ \pi^{0(-)} \phi$	dark scalars, majorons
\mathcal{O}_{Dd^2QLa}	$\epsilon^{abc}(\partial^{\mu}a)\left(Q_{a}^{i}\sigma^{\mu}d_{b}\right)\left(d_{c}L_{i}^{\dagger}\right)$	(1, 1)	8	$p(n) \to \nu \pi^{+(0)} a$ $p(n) \to e^+ \pi^{0(-)} a$	axion-like particles
\mathcal{O}_{Dd^2uNa}	$\epsilon^{abc}(\partial^{\mu}a)\left(d_{a}\sigma_{\mu}N^{\dagger}\right)\left(d_{b}u_{c}\right)$	(1, -1)	8	$n \to Na$ $p(n) \to \pi^{+(0)}Na$	axion-like particles with sterile neutrinos
${\cal O}_{duQeLar N}$	$\epsilon^{abc} \left(eu_a\right) \left(Q_b^i \sigma_\mu d_c\right) \left(N^\dagger \sigma^\mu L_i^\dagger\right)$	(1, 1)	9	$p \to e^+ \nu N$ $n \to e^+ e^- N$	sterile neutrinos
$\mathcal{O}_{du^2eN^2}$	$\epsilon^{abc} \left(d_a u_b \right) \left(e u_c \right) \left(N N \right)$	(1,3)	9	$p \rightarrow e^+ NN$	sterile neutrino

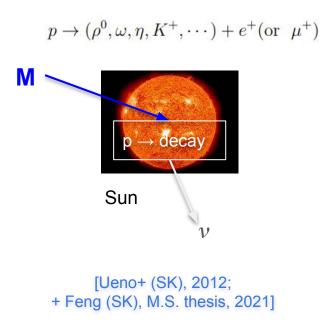
- Many novel possibilities mediated by motivated BSM particles
- Multi-nucleon decays possible (dinucleon, trinucleon...)
- Mixed scenarios possible
- Tests of light new physics over decades in mass below ~ few GeV

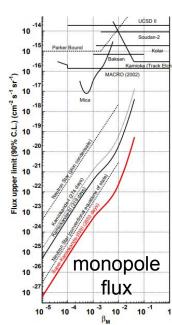

[Fridell, Hati, Takhistov, PRD Lett. (2024); + in preparation & others]

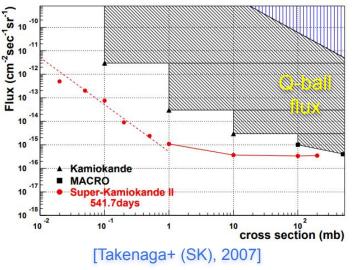
→ SK uniquely positioned to lead this

Non-Canonical and Dark Matter-Induced Decay Signatures

Complementary process class: "induced decays" by dark matter with (anti)baryon charge

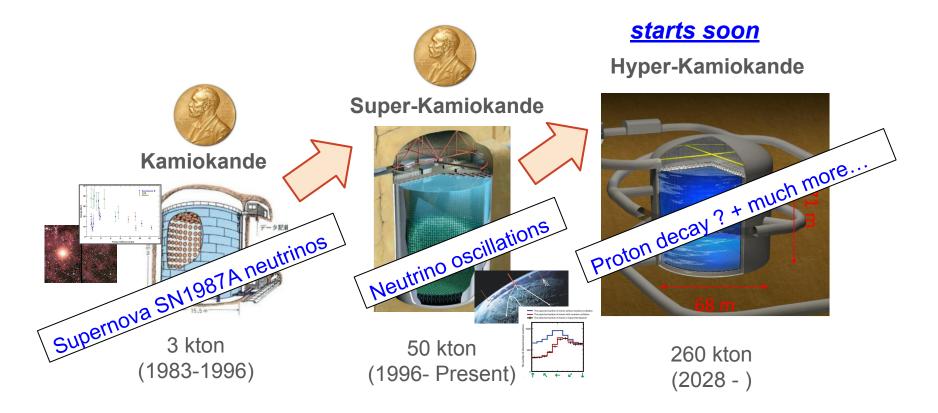



- Conventional searches can misinterpret or completely miss such channels
- Inclusive searches can probe many modes simultaneously [Heeck, Takhistov, PRD (2019)]

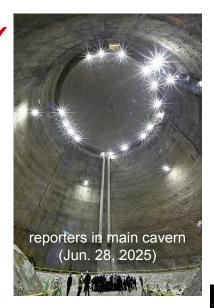

[Fridell, Hati, Takhistov, PRD Lett. (2024)]

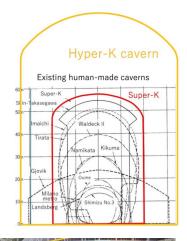
Decay Catalysis by Extended Objects: Monopoles, Q-Balls

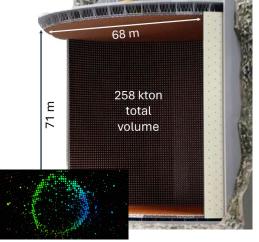
- Heavy monopoles from unified theories can be captured by Sun and catalyze proton decay via Callan-Rubakov process producing neutrinos
- Q-balls naturally appear from field instabilities in e.g. supersymmetric theories, dark matter
 Q-balls can catalyze nucleon decay in SK when carrying baryon number



Q-ball dark matter flux ~ $\Phi_Q \sim rac{
ho_{
m DM}}{M_O} v$

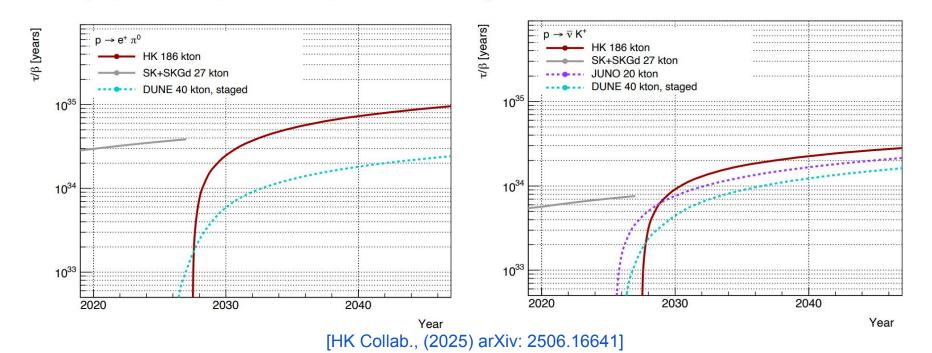

Into the Future with Hyper-Kamiokande (Hyper-K, HK)




The Hyper-Kamiokande Experiment

- Next generation flagship neutrino observatory in Japan
 - ~ 8.4 x SK fiducial mass
- Big construction progress
 - cavern excavation → complete (2025) ✓
- Engineering marvel
 - → largest man-made cavern in world
- Operation start 2028
 - R&D of all stages finalizing
 - PMT mass production continues

	Super-K	Hyper-K
Site	Mozumi	Tochibora
Overburden	2780 m.w.e.	1700 m.w.e.
Number of ID PMTs	11129	20000
Photo-coverage	40%	20% (×2 efficiency)
Mass / Fiducial Mass	50 kton / 22.5 kton	258 kton / 186 ktor



Going Beyond Existing Reach

- Uniquely positioned to broadly lead nucleon decay searches
- ullet Only approved experiment capable of reaching $au \sim 10^{35}
 m yrs$

Conclusions

- Super-Kamiokande is an exceptional multipurpose experiment and has established the world's most sensitive limits on a wide range of nucleon decay and baryon number violation processes
- Wide range of searches are pursued, covering conventional channels, multi-nucleon decays, n-n oscillations and other modes
- No evidence for nucleon decay has been observed, with lifetime limits reaching ~ few x 10³⁴ yrs → SK already excluded variety of theoretical models
- SK has broad search program ahead. Ongoing analyses and SK-Gd upgrade will further expand sensitivity and discovery potential
- Hyper-Kamiokande will build on this foundation with a broad nucleon decay program, extending searches to new frontiers and capabilities of uniquely probing lifetimes approaching ~10³⁵ yrs lifetime