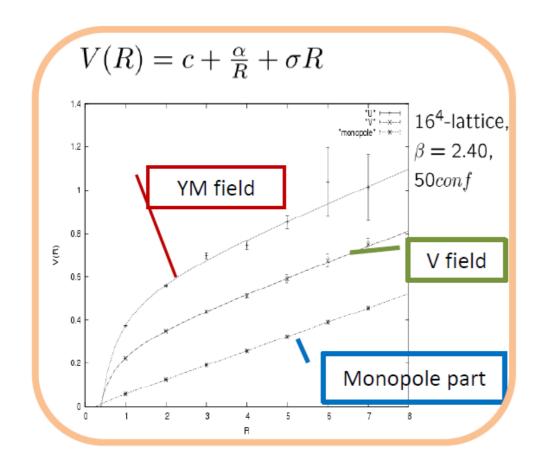

Emergence of magnetic monopoles for quark confinement due to violation of the non-Abelian Bianchi identity


Akihiro Shibata (KEK) and Kei-Ichi Kondo (Chiba Univ.)

Quark Confinement

Dual superconductor picture

is one of the most promising mechanism for quark confinement. In this picture, the magnetic monopole plays an important role.

The perfect magnetic-monopole dominance in the string tension, i.e., the string tension from Yang-Mills field is completely reproduce by one from the magnetic monopole.

Violation of Bianchi Identity vs emergence of magnetic monopole

$$\mathscr{J}_{\mathsf{m}}^{\mu}(x) = \sum_{k}^{N-1} K_{\mu}^{(k)}(x) \mathbf{n}^{(k)}(x)$$

 $\mathscr{J}^{\mu}_{\mathsf{m}}(x)$ represents the magnetic current:

$$\mathcal{J}_m := \mathcal{D}[\mathcal{A}]\mathcal{F}[\mathcal{A}] = \mathscr{J}^{\mu}_{\mathsf{m}} dx^{\mu}, \quad \mathscr{J}^{\mu}_{\mathsf{m}} := \mathscr{D}_{\nu}[\mathscr{A}]^* \mathscr{F}_{\mu\nu}[\mathscr{A}] = \varepsilon^{\mu\nu\alpha\beta} \mathscr{D}_{\nu}[\mathscr{A}]^* \mathscr{F}_{\alpha\beta}[\mathscr{A}],$$

and $\mathscr{F}_{\mu\nu}[\mathscr{A}]$ represents the field strength for Yang-Mills field \mathscr{A} .

 $\mathcal{K}^{(k)}$ represents the magnetic monopole:

$$\mathcal{K}^{(k)} = {^*d}\mathcal{F}^{(k)} = K_{\lambda}^{(k)} dx^{\lambda}, \ K_{\lambda}^{(k)} := \frac{1}{2} \epsilon^{\lambda \sigma \mu \nu} \partial_{\sigma} F_{\mu \nu}^{(k)}, \ F_{\mu \nu}^{(k)} = 2 \text{tr} \left(\mathscr{F}_{\mu \nu} [\mathscr{V}] \mathbf{n}^{(k)}(x) \right)$$

and $\mathscr{F}_{\mu\nu}[\mathscr{V}]$ represents the field strength for the restricted field \mathscr{A} obtained from the gauge-covariant field decomposition, $\mathscr{A}_{\mu}=\mathscr{V}_{\mu}+\mathscr{X}_{m}u$, and $\pmb{n}^{(k)}(x)$ the colordirection field.

Current Conservation:

$$\mathscr{D}_{\mu}[\mathscr{A}]\mathscr{J}_{\mathsf{m}}^{\mu} = 0 \iff \partial_{\mu}K_{\mu}^{(k)} = 0$$

Bianchi Identity

$$\mathscr{D}_{\mu}[\mathscr{A}]\mathscr{J}_{\mathsf{m}}^{\mu} = 0 \iff \partial_{\mu}K_{\mu}^{(k)} = 0 \qquad \mathscr{J}_{\mathsf{m}}^{\mu} = \mathscr{D}_{\nu}[\mathscr{A}]^{*}\mathscr{F}_{\mu\nu}[\mathscr{A}] = 0 \iff K_{\mu}^{(k)} = 0$$

- ► The non-Abelian Bianchi identity is nothing but the motion of equation.
- ► The violation of Bianchi identity is due to quantum effect.
- => Examine the phase transition between the Higgs phase and confinement phase.