



# KEK/QuP Research on Direct Optic Fiber Feedthroughs into Evacuated Systems

Suerfu Burkhant, Alex Drummond

## **Quick Introduction**

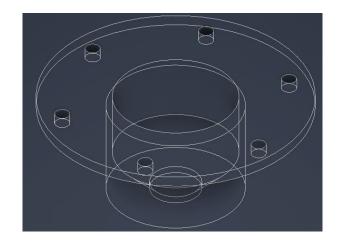


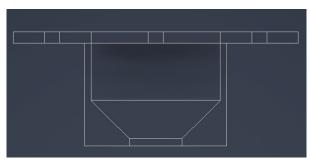




#### **Research Motivation**

- Existing feedthroughs (right) are limiting
- Cost, installation, complex
- Many use epoxy resin to create a vacuum seal on the cable itself

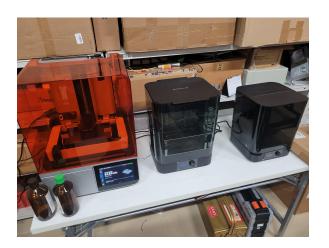


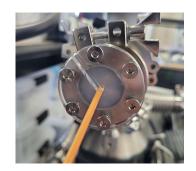



#### **Research Motivation**

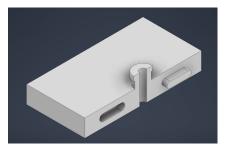
We decided to test the
 effectiveness of a direct
 silicone feedthrough for optic
 fiber cables into evacuated
 systems

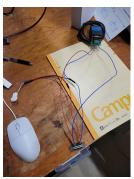






CAD wire representation of silicone filled feedthrough

#### **Experimental Setup**


- 3D print pieces to hold cable as silicone cures (CAD image on right)
- Laser cut acrylic for silicone molding, compression
- Wire configuration for RS485 to USB communication




Stereolithography 3D printer, washer, UV cure

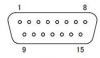


Feedthrough example





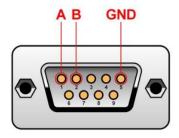
RS485 to USB wiring


## **Experimental Setup**

- Our Gauge; CC-10 Televac
- RS485 to USB cable (Innomaker)
- Gauge/Innomaker pin configuration
- Connected with DB9/DB15 soldered pieces



13.1/0 コネクタ


外部 I/O コネクタのピン配列、信号内容を示します。 ID サブコネクタ 15pin オス



I/O

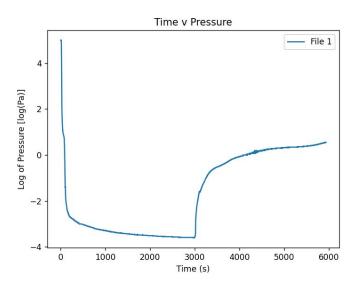
| ピン | 名 称                | 入出力                                     | 信号内容               |       |
|----|--------------------|-----------------------------------------|--------------------|-------|
| 番号 |                    | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                    |       |
| 8  | +24V               | 入力                                      | DC+24V 電源入力        |       |
| 15 | COM                |                                         | DC+24V COM 入力 (OV) | <注 1> |
| 7  | EXT V <sub>∞</sub> | 入力                                      | 外部電源入力 (DC+24V)    |       |
| 14 | IN1                |                                         | 大気圧校正トリガ入力         |       |
| 6  | IN2                |                                         | 手動ゼロ校正トリガ入力        | <注3>  |
| 13 | IN3                |                                         | HV INHIBIT 信号      |       |
| 9  | ANALOG OUT+        | 出力                                      | アナログ電圧出力           | <注2>  |
| 1  | ANALOG OUT-        |                                         | アナログ GND           | <注1>  |
| 5  | SP1                | 出力                                      | セットポイント 1 出力       |       |
| 12 | SP1 COM            |                                         | SP1 COM            |       |
| 4  | SP2                | 出力                                      | セットポイント2 出力        |       |
| 3  | SP3                |                                         | セットポイント3 出力        |       |
| 11 | SP2, SP3 COM       |                                         | SP2, SP3 COM (共通)  |       |
| 2  | RS485+             | 通信                                      |                    | <注4>  |
| 10 | RS485-             |                                         |                    |       |



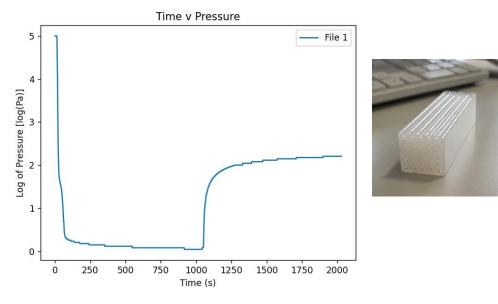


### **Experimental Setup**

- Coding for reading from the Gauge
- Coding for analyzing the data from the Gauge


```
function_map = {
    'exponential': Exponential,
    'polynomial': Polynomial,
    'gaussian': Gaussian,
    'linear': Linear
func = function map.get(args.type.lower())
if not args.simple:
    parameters, covariance = curve_fit(func, xdata[0], ydata[0], p0 = guess, maxfev=2000)
    fit A = parameters[0]
   fit_B = parameters[1]
   if args.type != 'linear':
        fit_C = parameters[2]
    if args.type == 'gaussian':
        fit_D = parameters[3]
    if args.type == 'linear':
        equation = f'y = {fit A:.3f}x + {fit B:.3f}
        fit v = Linear(xdata[0], fit A, fit B)
        print(f'Fit parameters are A - {fit_A:.3f} and B - {fit_B:.3f}')
        print(f'Guess parameters are A = \{guess[0]:.3f\} and B = \{guess[1]:.3f\} respectively.')
    elif args.type -- 'exponential':
```

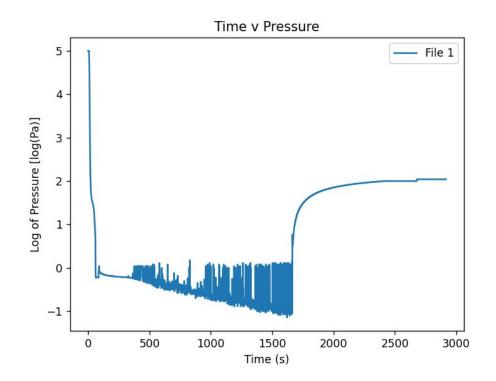
```
def read serial():
   with open(f'{log file path}.txt', 'a') as logfile:
       print("Starting to read from RS485...")
       print("Time (s), Pressure (Pa)")
       logfile.write(f'#Date: {formatted_time}\n#Purpose: Measure Pressure vs Time
       while not stop event.is set():
           response = query_gauge(ser, GAUGE_ADDRESS, 'S1')
           if response:
               current time - time.time()
               elapsed time - round(current time - start time, 2)
               mantissa = float(f"{response[3]}.{response[4]}")
               exp sign = 1 if response[5] == '1' else -1
               exp = int(response[6]) * exp sign
               log line = f"{elapsed time},{mantissa}e{exp}'
               logfile.write(log_line + '\n')
               logfile.flush()
               current time = time.time()
               elapsed time = round(current time - start time, 2)
               print(f"{elapsed time} seconds - No response from gauge.")
           woke early = wake event.wait(timeout=recording speed[0])
            if woke early:
               wake event.clear()
```


Snippets:
Serial reading (above)
Data analysis (left)
Example output file (right)

```
#Date: 2025-07-17 13:07:32
#Purpose: Measure Pressure
#Columns: Time, Pressure
#Units: Seconds, Pascals
1.38,1.0e5
2.75,1.0e5
4.07,1.0e5
5.3,1.0e5
6.52,1.0e5
7.73,1.0e5
9.03,1.0e5
10.24,1.0e5
11.48,1.0e5
12.74,1.0e5
14.0,1.0e5
15.23,1.0e5
16.57.1.0e5
17.85.6.5e4
19.11,3.9e4
20.39,1.6e4
21.68,5.4e3
```

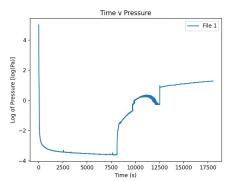
#### **Test Measurements**



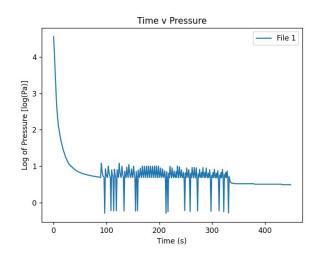

Ultimate vacuum/base leak rate



Silicone degas rate


#### **Test Measurements**

- Silicone degas rate high;
   attempt to cure in vacuum
- Cured silicone in vacuum, then tested degas rate (right)
- Believe that curing the silicone in vacuum caused condensate to enter pump/gauge, causing errors




## Currently

- Troubleshooting gauge errors
- Gauge has errors between 3-5
   Pa and when below 1 Pa
- Purging vacuum
- Replacing vacuum system



Measure of vacuum after replacing gauge, vacuum system



One purge cycle; example of gauge misreading between 3-5 Pa Thank you!
Any questions?