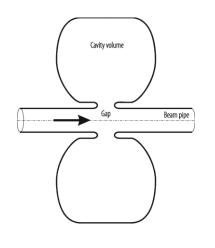
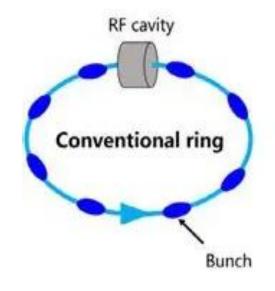
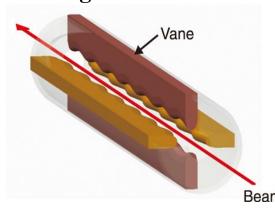
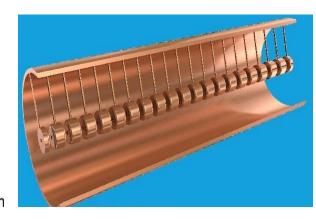

RF Cavity


What's RF Cavity?

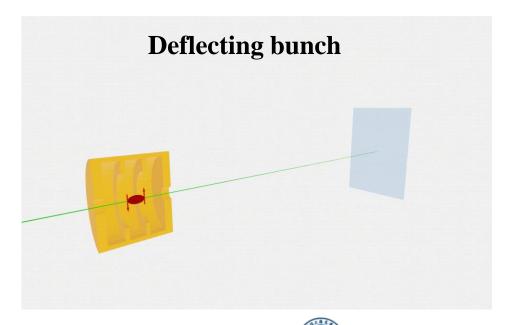


NC Copper boundary + Vacuum space in this course!


Typic RF cavities


1. Single-cell RF cavity in electron ring




Focusing and acceleration

2. Multi-cell accelerating structure in linac

- >Look back to basic theory
- >NC accelerating structure
- > Deflecting cavity
- >NC RF cavity for light source

Basic Theory: Maxwell Equations

Faraday's Law

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

Ampère's Law

$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$

Gauss' Law (Electricity)

$$\nabla \bullet \mathbf{D} = \rho$$

Gauss' Law (Magnetism)

$$\nabla \bullet \mathbf{B} = 0$$

Where:

J is the current density

E is the electric field intensity

D is the electric flux density

H is the magnetic intensity field

B is the magnetic flux density

p is the charge density

James Clerk Maxwell

Look back to basic theory in RF cavity

Wave equation

$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial^2}{\partial t^2} \mathbf{D}(\mathbf{r},t) - \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t) \quad | \text{ applying the material law } \mathbf{D} = \varepsilon \mathbf{E}$$
$$= -\varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r},t) - \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t)$$

$$\nabla \times \nabla \times \mathbf{E}(\mathbf{r}, t) + \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = -\mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r}, t)$$
 curl-curl equation

$$\nabla \left(\underbrace{\nabla \cdot \mathbf{E}(\mathbf{r},t)}_{\underline{\rho(\mathbf{r},t)}} \right) - \nabla^2 \mathbf{E}(\mathbf{r},t) + \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r},t) = -\mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r},t) \quad \Big| \quad \text{for charge-free in the vacuum}$$

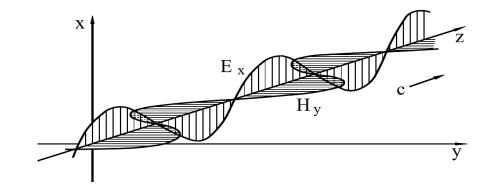
$$\nabla^2 \mathbf{E}(\mathbf{r}, t) - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = \mu \frac{\partial}{\partial t} \mathbf{J}(\mathbf{r}, t) \quad \text{wave equation (with excitation)}$$

Wave equation

Wave equation with excitation

$$\nabla^{2}\mathbf{E}(\mathbf{r},t) - \varepsilon\mu \frac{\partial^{2}}{\partial t^{2}}\mathbf{E}(\mathbf{r},t) = \mu \frac{\partial}{\partial t}\mathbf{J}(\mathbf{r},t)$$

Reminding: vacuum in the RF cavity, far from the sources, excitation vanishes

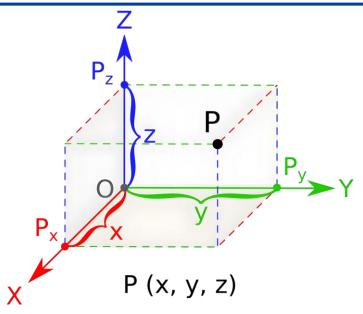

$$\nabla^2 \cdot \mathbf{E}(\mathbf{r}, t) - \varepsilon \mu \frac{\partial^2}{\partial t^2} \mathbf{E}(\mathbf{r}, t) = \mathbf{0} \quad \text{with speed of light} \quad c = \frac{1}{\sqrt{\varepsilon \mu}}$$

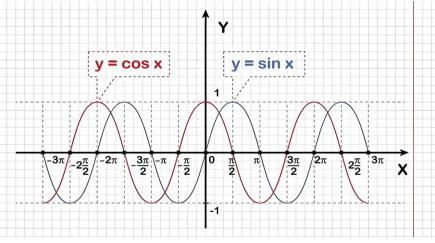
RF field works on the constant frequency on in the RF cavity, then wave equations is:

$$\nabla^2 \vec{E} + k^2 \vec{E} = 0$$

- Take-home
- Derivation

$$\nabla^2 \vec{H} + k^2 \vec{H} = 0$$

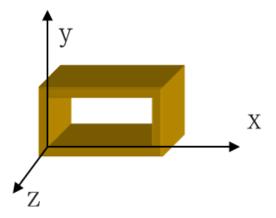

Wave number



$$k^2 = \omega^2 \varepsilon \mu$$

Plane Wave propagating in +z-Direction in free space

RF field in rectangular waveguide


Cosine and Sine in all directions: X, Y, Z.

Cartesian coordinate system

$$E(x, y, z),$$

 $H(x, y, z)$

TE_{mnp} mode

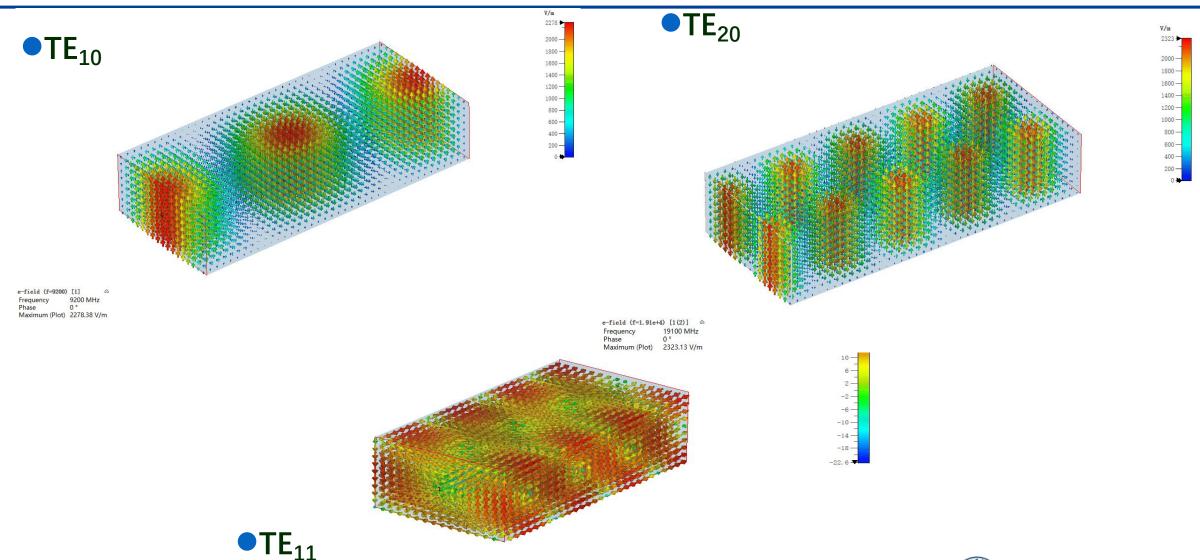
$$\underline{E}_{x} = -\underline{C}^{H} \frac{n\pi}{b} \cos(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y) e^{\pm ik_{z}z} , \qquad \underline{H}_{x} = \underline{C}^{E} \frac{n\pi}{b} \sin(\frac{m\pi}{a}x) \cos(\frac{n\pi}{b}y) e^{\pm ik_{z}z} ,
\underline{E}_{y} = \underline{C}^{H} \frac{m\pi}{a} \sin(\frac{m\pi}{a}x) \cos(\frac{n\pi}{b}y) e^{\pm ik_{z}z} , \qquad \underline{H}_{y} = -\underline{C}^{E} \frac{m\pi}{a} \cos(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y) e^{\pm ik_{z}z} ,
\underline{E}_{z} = 0 , \qquad \underline{H}_{z} = 0 ,
\underline{H}_{x} = \pm \frac{k_{z}}{\omega\mu} \underline{E}_{y} , \qquad \underline{E}_{x} = \pm \frac{k_{z}}{\omega\varepsilon} \underline{H}_{y} ,
\underline{H}_{y} = \pm \frac{k_{z}}{\omega\varepsilon} \underline{H}_{x} , \qquad \underline{E}_{y} = \pm \frac{k_{z}}{\omega\varepsilon} \underline{H}_{x} ,
\underline{H}_{z} = -\underline{C}^{H} \frac{k^{2} - k_{z}^{2}}{i\omega\mu} \cos(\frac{m\pi}{a}x) \cos(\frac{n\pi}{b}y) e^{\pm ik_{z}z} . \qquad \underline{E}_{z} = \underline{C}^{E} \frac{k^{2} - k_{z}^{2}}{i\omega\varepsilon} \sin(\frac{m\pi}{a}x) \sin(\frac{n\pi}{b}y) e^{\pm ik_{z}z} .$$

TM_{mnp} mode

$$\underline{H}_{x} = \underline{C}^{E} \frac{n \pi}{b} \sin(\frac{m \pi}{a} x) \cos(\frac{n \pi}{b} y) e^{\pm i k_{z} z} ,$$

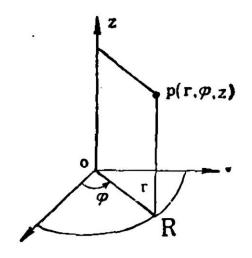
$$\underline{H}_{y} = -\underline{C}^{E} \frac{m \pi}{a} \cos(\frac{m \pi}{a} x) \sin(\frac{n \pi}{b} y) e^{\pm i k_{z} z} ,$$

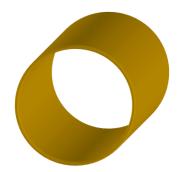
$$\underline{H}_{z} = 0 ,$$

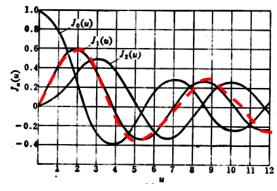

$$\underline{E}_{x} = \mp \frac{k_{z}}{\omega \varepsilon} \underline{H}_{y} ,$$

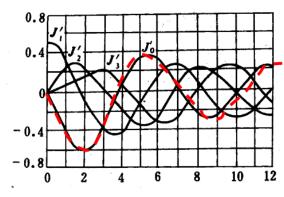
$$\underline{E}_{y} = \pm \frac{k_{z}}{\omega \varepsilon} \underline{H}_{x} ,$$

$$\underline{E}_{z} = \underline{C}^{E} \frac{k^{2} - k_{z}^{2}}{i\omega \varepsilon} \sin(\frac{m \pi}{a} x) \sin(\frac{n \pi}{b} y) e^{\pm ik_{z} z}$$


RF field in rectangular waveguides




RF field in Circular waveguides



Cylindrical coordinate system

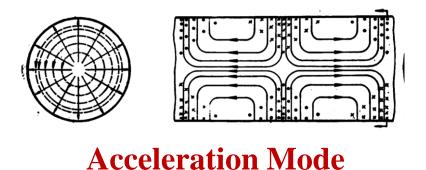
$$E(r, \varphi, z),$$

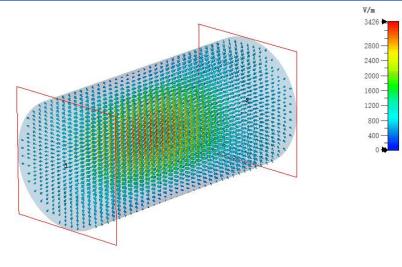
 $H(r, \varphi, z)$

Bassel Functions $J_n(k_c r)$ Derivative functions $J'_n(k_c r)$

TE_{mnp} mode

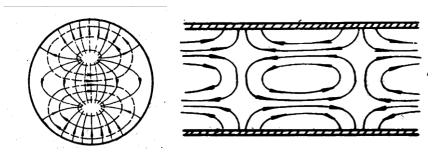
$$\begin{cases} E_z = 0 \\ E_r = \frac{jn\omega_0\mu_0}{k_c^2r} H_m J_n(k_c r) \sin[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0\mu_0}{k_c} H_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ H_z = H_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ H_r = -\frac{jk_z}{k_c} H_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ H_\phi = \frac{jnk_z}{k^2r} H_m J_n(k_c r) \sin[n(\phi - \phi_0)] e^{-jk_z z} \end{cases}$$

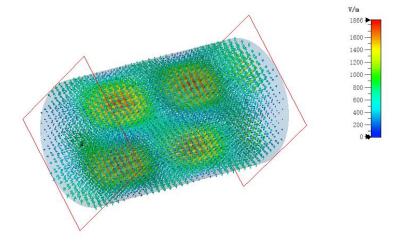

TM_{mnp} mode


$$\begin{cases} E_z = E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_r = -\frac{jk_z}{k_c} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jnk_z}{k_c^2 r} E_m J_n(k_c r) \sin[n(\phi - \phi_0)] e^{-jk_z z} \\ H_z = 0 \\ H_r = -\frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \sin[n(\phi - \phi_0)] e^{-jk_z z} \\ H_\phi = -\frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ H_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{jn\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{j\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{j\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{j\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{j\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{j\omega_0 \varepsilon_0}{k_c^2 r} E_m J_n(k_c r) \cos[n(\phi - \phi_0)] e^{-jk_z z} \\ E_\phi = \frac{j\omega$$

- \square Cosine and Sine in φ , z directions
- **□** However Bassel in r directions

RF field in Circular waveguides

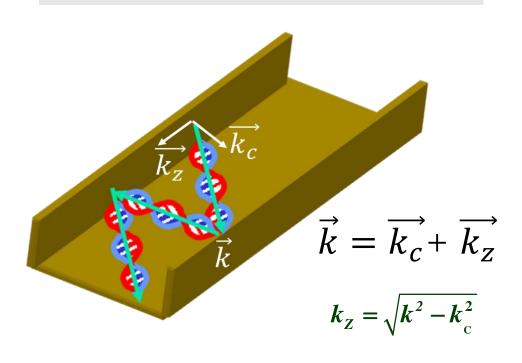

●TM₀₁

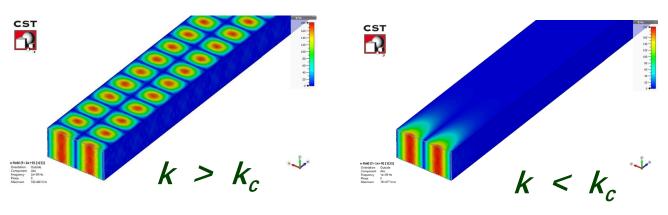


e-field (f=1.2e+4) [1(3)]
Frequency 12000 MHz
Phase 0°
Maximum (Plot) 3425.93 V/m

•HEM₁₁

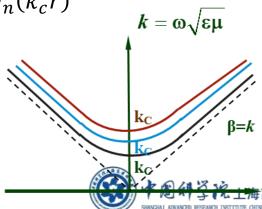
Deflecting Mode

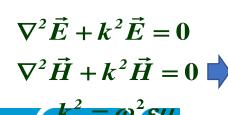




Cut-off frequency and dispersion

Wave is reflected many times during propagation in the waveguide.





$k_c = 2\pi f_c$ is cut-off frequency

Rect.
$$k_{c(mn)} = \sqrt{\left(\frac{\mathbf{m}\pi}{\mathbf{a}}\right)^2 + \left(\frac{\mathbf{n}\pi}{\mathbf{b}}\right)^2}$$

$$k_c$$
 in $J_n(k_c r)$

$$\mathbf{E}_{\mathbf{Z}} = \mathbf{E}_{\mathbf{Z}}(\mathbf{x}, \mathbf{y}) \mathbf{e}^{\mp \mathbf{j}k_{\mathbf{Z}}\mathbf{Z}}$$

$$\mathbf{H}_{\mathbf{Z}} = \mathbf{H}_{\mathbf{Z}}(\mathbf{x}, \mathbf{y}) \mathbf{e}^{\mp \mathbf{j}k_{\mathbf{Z}}\mathbf{Z}}$$

$$\nabla^{2}\vec{E} + k^{2}\vec{E} = 0$$

$$\nabla^{2}\vec{H} + k^{2}\vec{H} = 0 \Rightarrow H_{z}(x,y)e^{\mp jk_{z}Z}$$

$$H_{z} = H_{z}(x,y)e^{\mp jk_{z}Z}$$

$$H_{z} = H_{z}(x,y)e^{\mp jk_{z}Z}$$

$$K_{z}^{2} = k^{2} - k_{z}^{2}$$

$$K_{z}^{2} = k^{2} - k_{z}^{2}$$

Some types of RF cavity

- **□**Accelerating structures
- □Deflecting RF cavity
- **DNC** Single-cell RF cavity

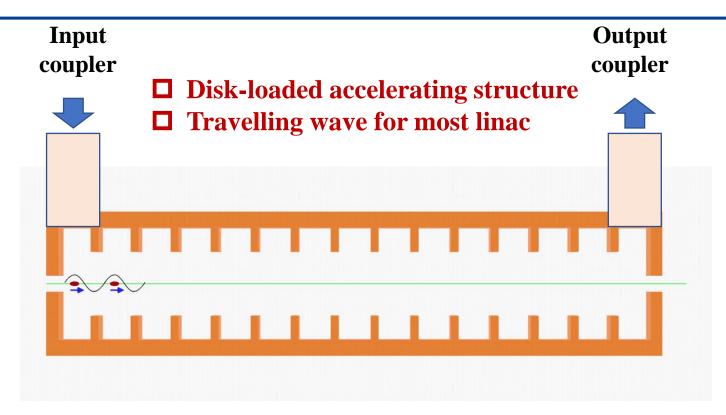
Accelerating structures for linac

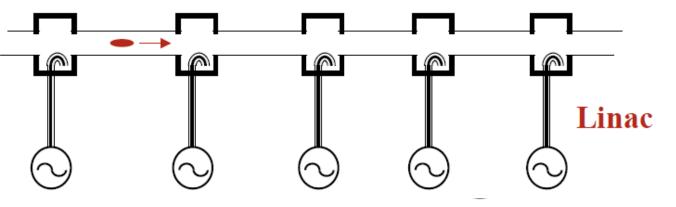
$$E_p = q \cdot E_z \cos(\omega t - \beta z) \cdot L$$

E_p: Energy gain in the structure

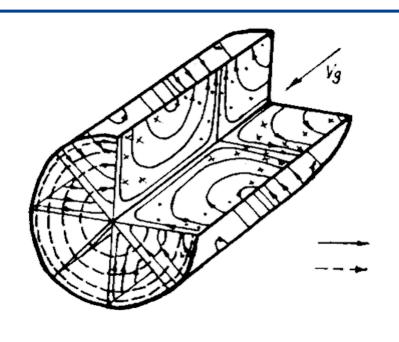
q: Charge of particle

E_z: Accelerating gradient


 ω : Frequency of RF structure


 β : Vp/c, phase velocity of RF field.

L: Length of accelerating structure


- Synchronization acceleration
- ☐ Cascaded for linac

Why disk-loaded? Not constant circular waveguide?

$$\mathbf{E}_{\mathbf{z}} = \mathbf{E}_{\mathbf{o}} \mathbf{J}_{\mathbf{o}} (\mathbf{k}_{\mathbf{c}} \mathbf{r}) \cdot \mathbf{cos}(\omega \mathbf{t} - \beta \mathbf{z}) \qquad \beta = \frac{\omega}{\mathbf{V}_{\mathbf{p}}}$$

$$\mathbf{k}_{c}^{2} = \left(\frac{\omega}{c}\right)^{2} - \left(\frac{\omega}{V_{p}}\right)^{2} > 0 \qquad V_{p} > c$$

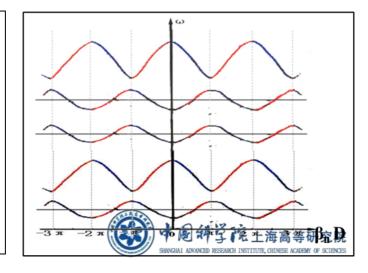
Take-home

In physics?

In order to propagate RF field and synchronize particle and RF phase together, constant circular waveguide is not able to used for acceleration directly, and disk-loaded structure can slow the phase velocity to match the light speed c.

Periodic structure, Floguet theorem

TMOI



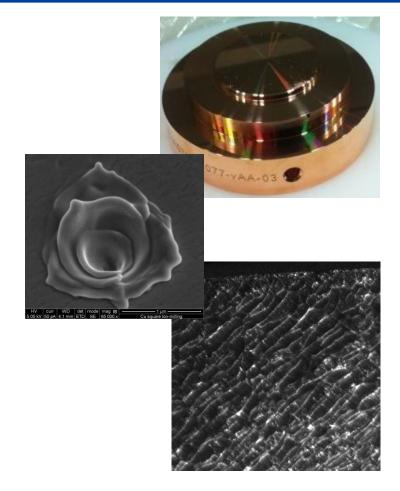
$$\boldsymbol{E}_{z}=j\underset{n=-\infty}{\overset{\infty}{\sum}}\boldsymbol{E}_{n}\boldsymbol{J}_{0}(\chi_{n}r)e^{j(\omega t-\beta_{n}z)}$$

$$E_{r} = -\sum_{n=-\infty}^{\infty} \frac{E_{n}\beta_{n}}{\chi_{n}} J_{1}(\chi_{n}r) e^{j(\omega t - \beta_{n}z)}$$

$$\boldsymbol{H}_{\boldsymbol{\theta}} = -\omega \boldsymbol{\epsilon}_{0} \sum_{n=-\infty}^{\infty} \frac{\boldsymbol{E}_{n}}{\boldsymbol{\chi}_{n}} \boldsymbol{J}_{1}(\boldsymbol{\chi}_{n} \boldsymbol{r}) e^{j(\omega t - \beta_{n} \boldsymbol{z})}$$

$$E_{\theta} = H_{r} = H_{z} = 0$$

High gradient is key issue on R&D

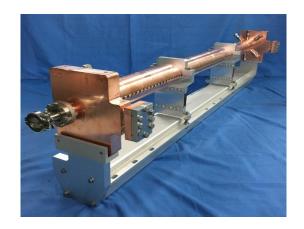

- **1** 1928 Fowler-Nordheim $I_F = \frac{1.54 \times 10^{-6} \times 10^{\frac{4.52\varphi^{-0.5}}{A_e \beta^2 E^2}} \exp\left(-\frac{6.53 \times 10^9 \varphi^{1.5}}{\beta E}\right)$
- 1957 W. D. KILPATRICK $WE^2e^{-K_1/E} = K_2$

DC. Low frequency

- 1983 W. Peter Modified Kilpatrick formula $f = (62/E) e^{17E}$
- 1989 Wang, Juwen Field-emission $I_{FE} = \frac{5.7 \times 10^{-12} \times 10^{4.52 \varphi^{-0.5}} A_e (\beta E)^{2.5}}{\varphi^{1.75}} e^{-K \varphi^{1.5} / \beta E}$
- **2** 2009 A. Grudiev Modified Poynting vector $S_c = Re\{\bar{S}\} + g_c \cdot Im\{\bar{S}\}$
- **2** 2011 Z. Insepov Surface damage $MTBF = BJ^n e^{-E_d/kT}$

RF, Microwave X/C/S-band

- **2** 2012 K. Nordlund Dislocation enthalpy $R_{BD} = a' c_0 E_i^{-E_i/k_B T} E_0^{E_0 \Delta V/k_B T} = a e^{\epsilon_0 \Delta V/k_B T}$
- lacksquare 2018 Eliyahu Zvi Engelberg Fluctuation of moving dislocation $au^{\sim} \exp\left\{ r \left(1 \frac{E}{E_0}\right) \right\}$
- 2022 Zhou Liuyuan Modified dislocationg fluctuation $R_{BD} = C \exp\left\{\gamma\left(1 \sqrt{\frac{\sigma_L}{\sigma_0}}\right)\right\} \sim \exp(\xi\sigma_L)$



Typical accelerating structures for linac

	S-band	C-band	X-band
Structure	SLAC/PAL-FEL	SPring-8/SXFEL	NLC/GLC
RF Frequency	2856 MHz	5712 MHz	11424 MHz
Structure Length	3 m	1.8 m	0.6 m
Filling time	830 ns	286 ns	105 ns
Shunt impedance	53 ~ 60 MΩ/m	53.1 MΩ/m	$48.8 \sim 77.8 \ \mathrm{M}\Omega/\mathrm{m}$
Operational Gradient	20 MV/m	40 MV/m	65-80 MV/m

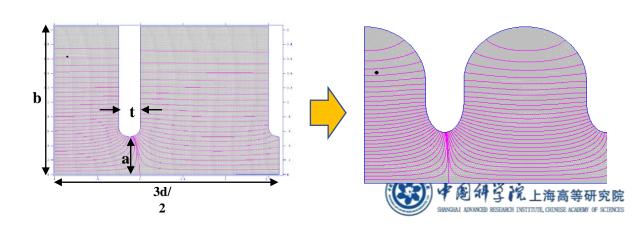
How to design the accelerating structure

- Aperture range a/λ wakefields
- Optimization for high RF efficiency
- Attenuation factor
- Total length
- Group velocity range
- High field suppression
- Beam loading calculation

Longitudinal
$$SWR: W(s) = \frac{Z_0 c}{\pi a^2} e^{-1.16(s/mm)^{0.55}}$$

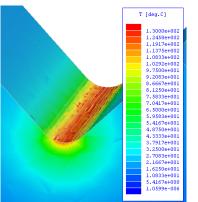
Transverse
$$SWR: W(s) = \frac{2Z_0c}{\pi a^4} (1 - e^{-0.89(s/mm)^{0.87}})$$

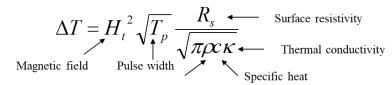
Shunt
$$Rs = \frac{E^2}{P_l}$$


Group velocity
$$v_g = \frac{\omega L}{Q} \{ [1 - (1 - e^{-2\tau})z/L]/(1 - e^{-2\tau}) \}$$

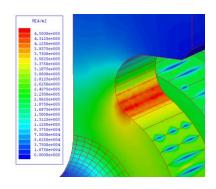
Peak field
$$S_c = \text{Re}\{\bar{S}\} + g_c \cdot \text{Im}\{\bar{S}\},$$
 and more...

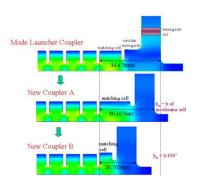
For FEL and light source:


- Good beam quality: large aperture a/λ
- Higher impedance: high mode, 3pi/4, 4pi/5, 5pi/6
- Lower field distribution: round cell, elliptical iris

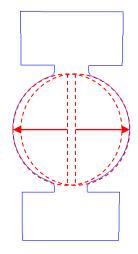


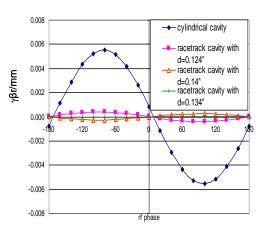
Coupler design


- 1. Coupler Problem and Resolutions
 - Pulse Heating Reduction
 - Fat lips
 - Waveguide couplers
 - Symmetry feed for correction of dipole modes
 - Racetrack cavity for correction of quadruple modes

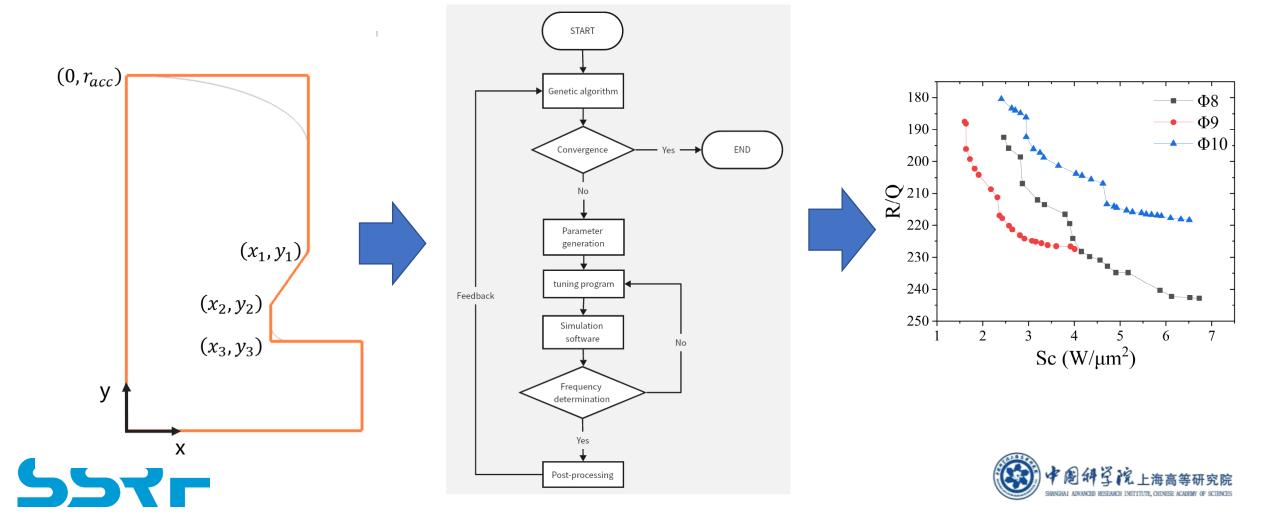


- 2. Some Coupler Types
 - Iris coupling
 - Mode convertor coupling
 - Compact coupler
- 3. Coupler simulation
 CST
 HFSS
 Multi-physics simulation



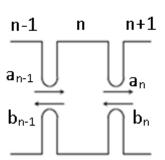

Iris coupling
High pulse heating
More symmetric
Low energy (Sband)

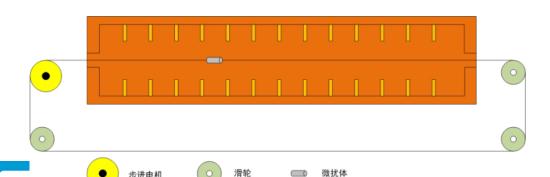
Mode launcher low pulse heating asymmetric High energy (C/X-hand)

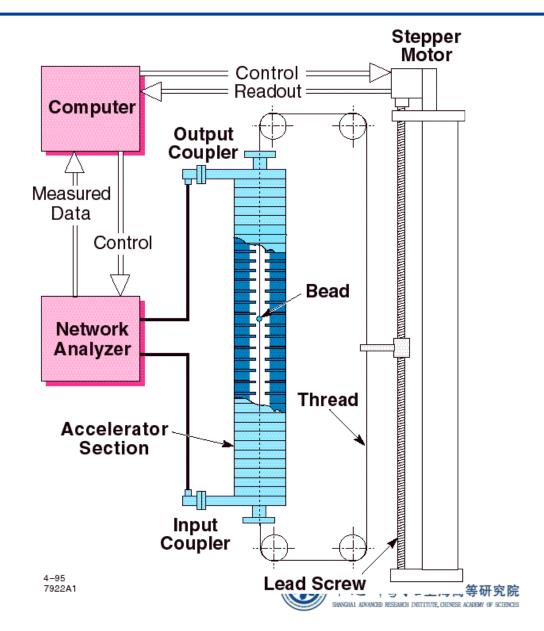

Racetrack coupler

Genetic algorithm used for optimization

- Many size and angle parameters as input, and many targets should be opzimized as well
- Genetic algorithm is used to improve the efficiency of high gradient AC optimization

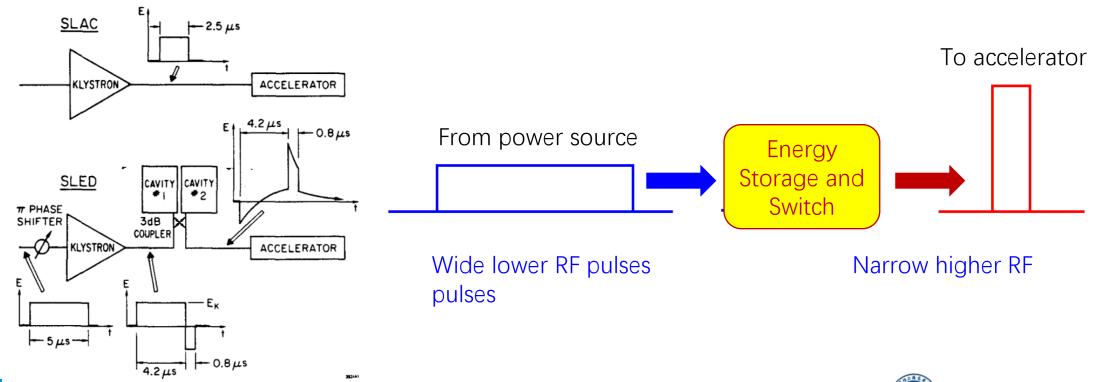



Bead-pulled RF measurement and tuning


$$2P_i(\Gamma_p - \Gamma_a) = -j\omega[k_e E_a^2 - k_m H_a^2]$$

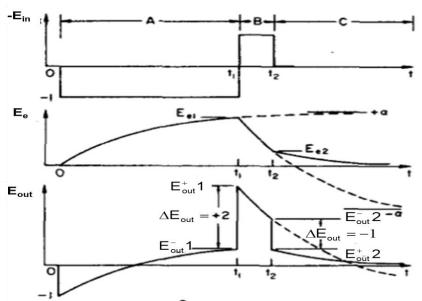
$$\Delta S11 = S11_p - S11_a = -\frac{j\omega k_e}{P_i} E_z^2$$

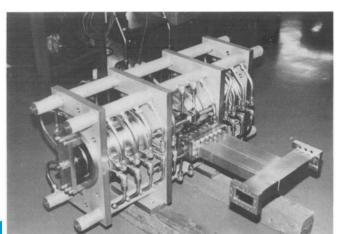
$$S_n e^{j\theta_n} = \frac{b_n e^{j\phi_n} - b_{n+1} e^{j(\phi_{n+1} - 2\pi/3)}}{a_n e^{j\psi_n}} = A + jB$$



Pulse Compressor to improve high gradient

- Extremely high RF power is needed for high gradient accelerators
- High peak RF power limitation for pulsed sources



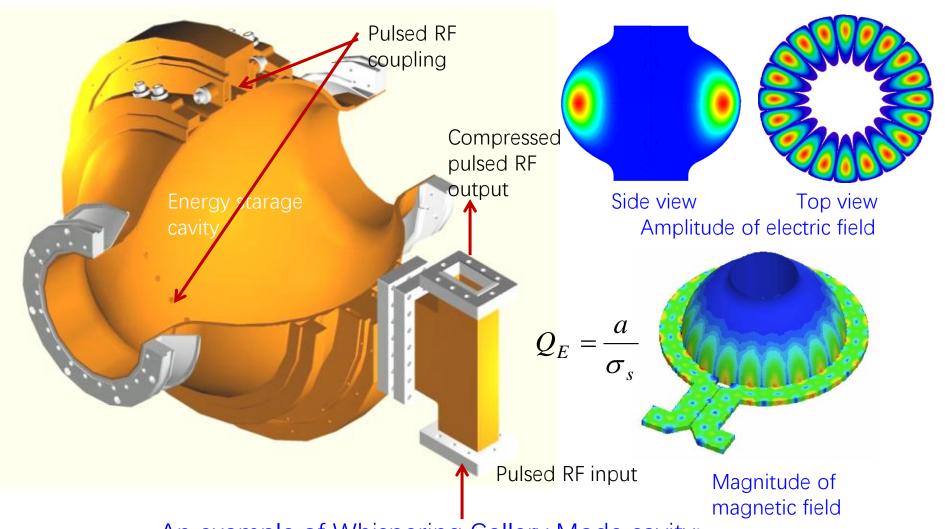


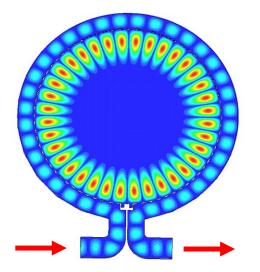
SLED

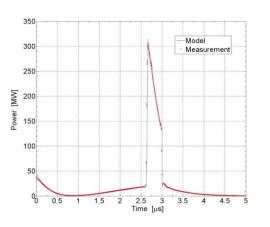
Waveforms for SLED System

S-band, KEK, ATF&KEKB, Japan 1992.

WATER COOLING वाल काल काल काल काल COUPLING APERTURES To accelerators FINE TUNING MECHANISMS WAVEGUIDE BENDS & VACUUM FLANGES TE_{01N} field pattern. -3db HYBRID COUPLER From klystron COPPER TE DIS CAVITIES WAVEGUIDE "DOG-LEG" SECTIONS STAINLESS -

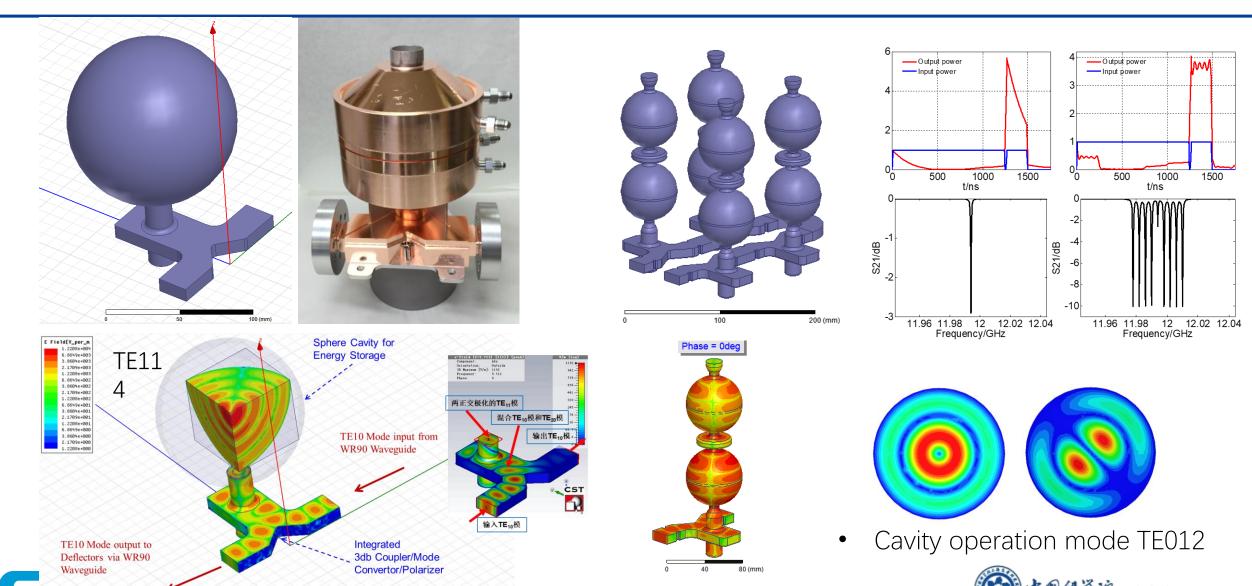






C-band, SXFEL, Shanghai, 2016高等研究院

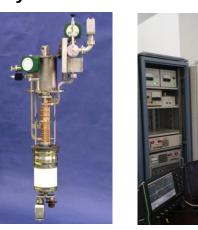
Barrel Open Cavity (BOC)



New spherical Pulse compressor (Flat-top output)

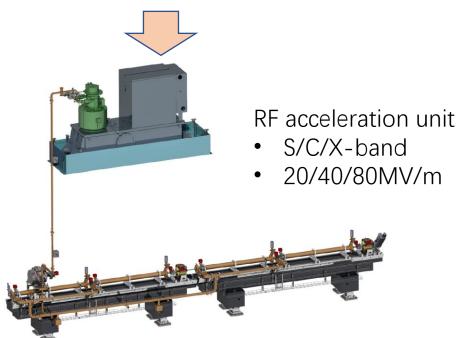
RF system of high gradient accelerating structure

Accelerating structure

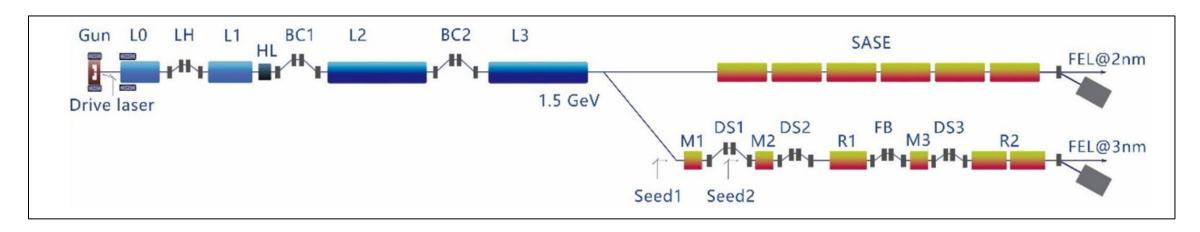

Pulse compressor

Waveguide system

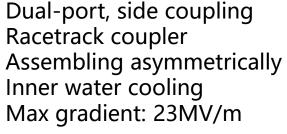
Klystron



Low-level RF control



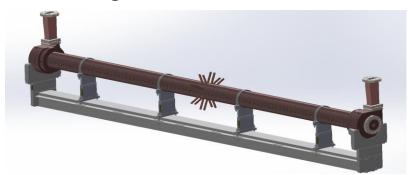
Linac example: NC RF system at SXFEL

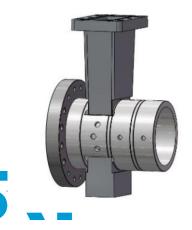


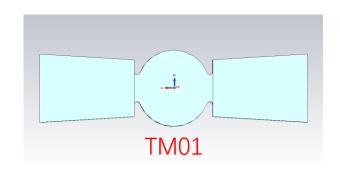
Reference Signal Distribution System Total:9 Sets Undulator Total:4 Sets L2-2 · · · L2-7 L3-2 L3-17 L3-18 C-TDS L2-1 X-TDS S-TDS L1-1 L1-2 Linearizer L0-2 X-band RF S-band RF C-band RF

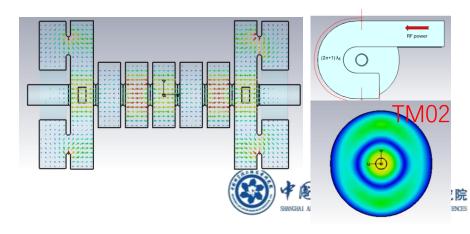
S-band accelerating structures at SXFEL

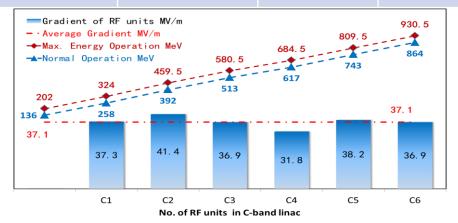
☐ Single port-> dual port, race track ->dual-port, dual mode.

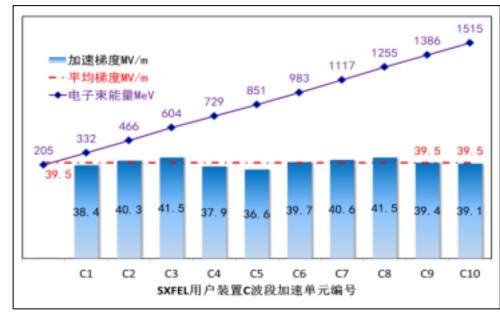

Single-port, side coupling Outer water cooling Multi-pole field Max gradient: 17MV/m

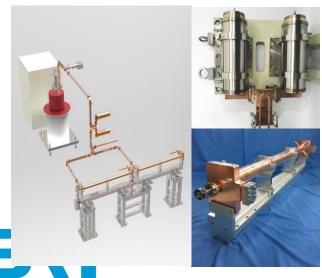


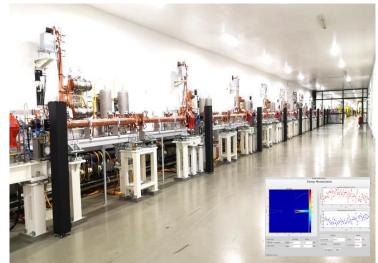

Dual feed, one-port Racetrack coupler Perfect symmetry Inner water cooling Max gradient: 23MV/m

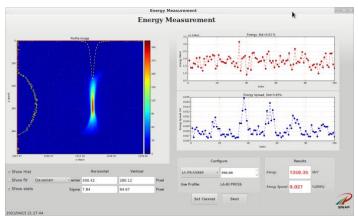


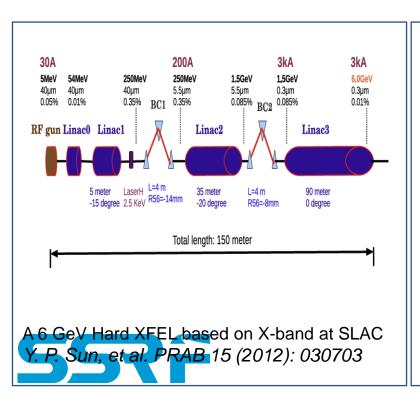


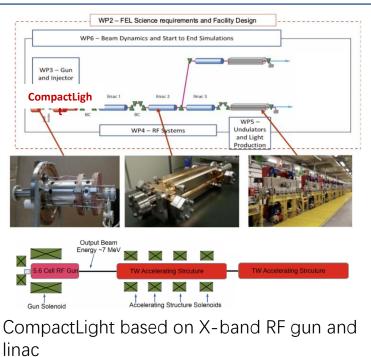





C-band accelerating structures at SXFEL


SWISSFEL*	SACLA**	SXFEL-TF	SXFEL-UF
28 MV/m	35 MV/m	37.1 MV/m	39.5 MV/m

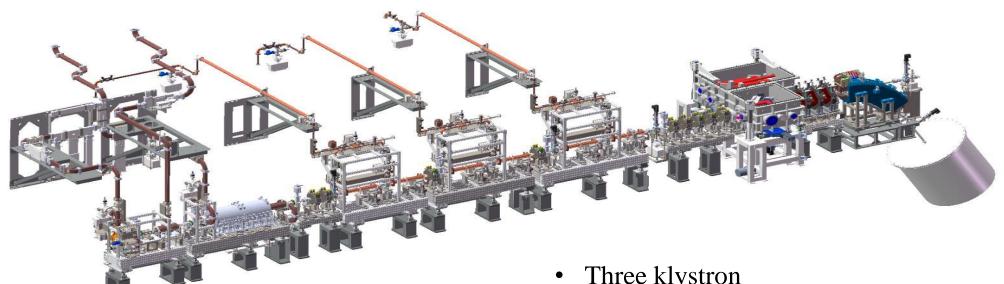


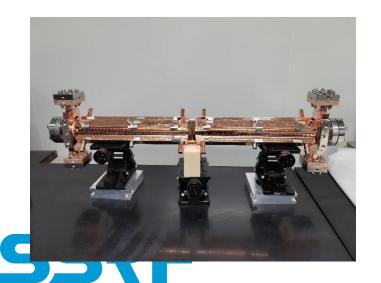


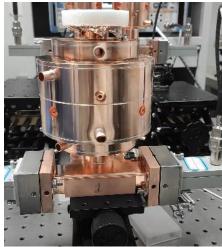
Linac example 2: Compact XFELs based on X-band technology

- > A 6-GeV hard XFEL based on X-band photoinjector and linac is proposed by SLAC in 2012.
- ➤ The CompactLight design study, launched by a team of 22 International Laboratories and two Industries in January 2018. The main linac is based on very high-gradient X-band accelerating structures.
- > SXFEL, LCLS, FERMI ELETTRA, Swiss FEL and PAL XFEL used X-band accelerating structrure and deflecting structure for linerizer and diagnostic.

D. González-Iglesias, et al., NIM, A 1014 (2021) 165709.

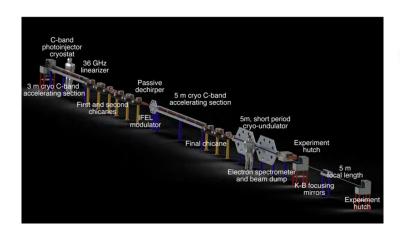

X-band accelerating structure and deflecting structure applied on SXFEL for linerizer and diagnostic.

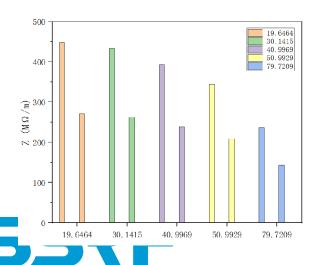

X. X. Huang, et al., NIM, A 854 (2017) 45-52.

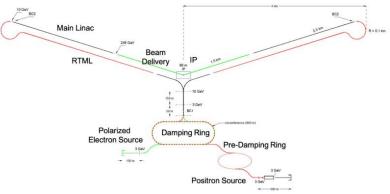

J. H. Tan, et al., NIM, 4930 (2019) 21

1930 (2019) 210-219 上海高等研究院 SHANGHAI ADVANCED RESEARCH INSTITUTE, CHINSEE ACADEMY OF SCIENCES

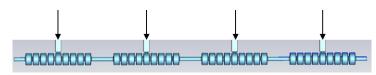
Linac example 3: X-band linac for VIGAS at Tsinghua University



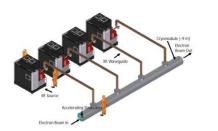

- Three klystron
 - Each 50 MW, 1.5us
- Three pulse compressor (SLED I type)
- Six X band high gradient structures
 - Average gradient >= 80 MV/m
 - Energy gain per structure > 50 MeV
 - Filling time < 150 ns
- 91 MW at Xacc w/ PC gain factor as 4.5

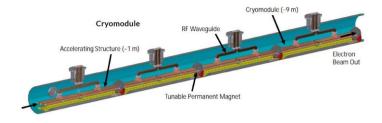


Next: Cryogenic high gradient accelerating structures

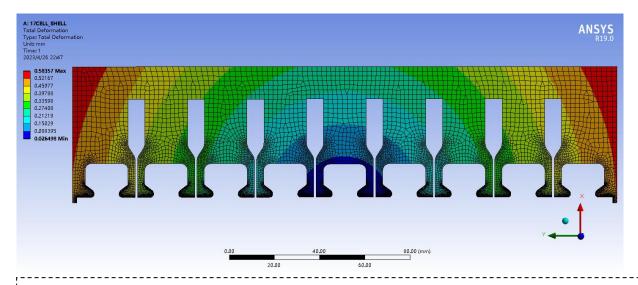


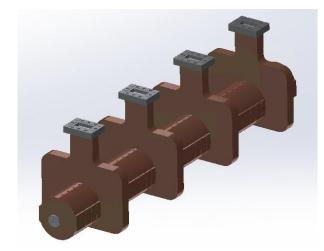
Cryogenic for ultra compact FEL

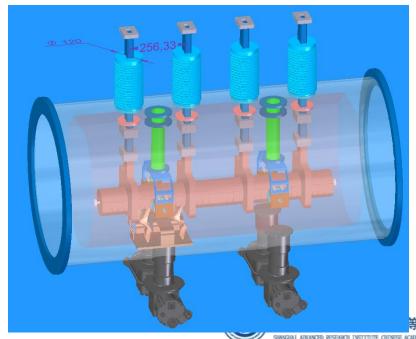



- C3: Cooled Copper Collider
- total length: 33 km->8 km, 250/550GeV

Parameter	Value	Unit
Frequency	5712	MHz
Temperature	20-50	K
Shunt impedance@20K	0.0037	Ω
Gradient E_{acc}	65/80	MV/m
Meterial	Copper	
RRR	500	
Cooling	Helium	

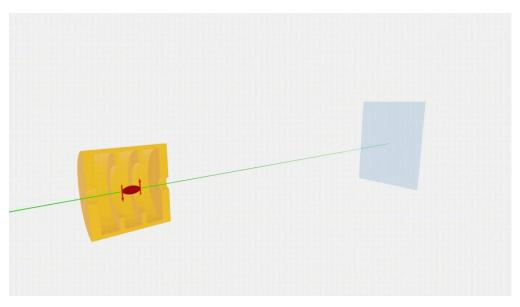



- C-band cryogenic module for C3
- $460M\Omega/m$
- 20-80K (27K for UC-XFEL; 80K for C3)
- Peak electrical field: 140MV/m



Cryogenic RF cavity

- ☐ The structure dynamic thermal load is 80W@40K.
- Static thermal load 20W/40K.
- □ Plus 50%, total thermal load 150W@40K.
- The number of chillers is 4.
- ☐ For each chiller, the length and thickness of the cooling belt of the structure are calculated according to 75W@30K
- ☐ The fabrication of first cryogenic system prototype will carried out recently.


Some types of RF cavity

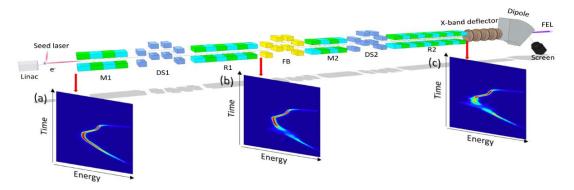
- □ Accelerating structures
- **□**Deflecting RF cavity
- **DNC** Single-cell RF cavity

Deflecting RF cavity for beam diaganotics

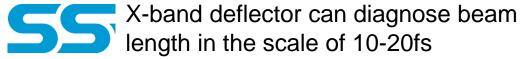
Principal of operation of the TM11 transverse deflecting RF cavity to measure bunch length, diagnose beam-laser synchronize and real-time lasing spectrum on a profile monitor.

$$eV_{\perp} \approx n \frac{\lambda}{2\pi c\Delta t} \sqrt{\frac{\varepsilon_N Emc^2}{\beta_d}}$$

 V_1 : Deflecting voltage

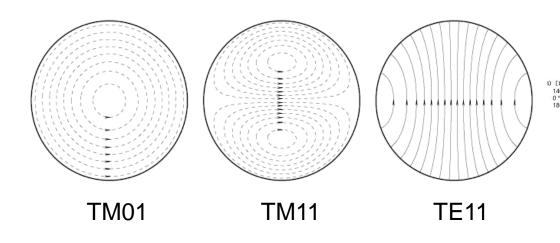

 Δt : time or length resolution

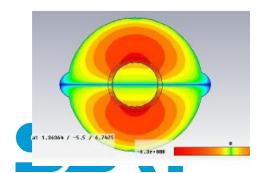
 $1/\lambda$: frequecy of cavity

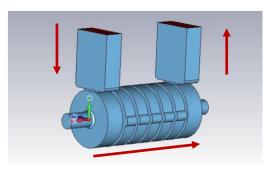

 ϵ : Emittance

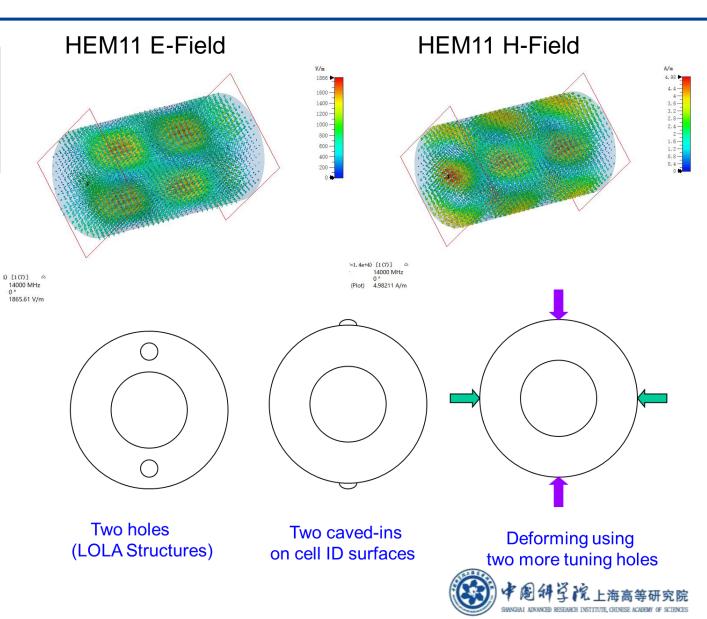
E : beam energy

 β_d : twiss parameter

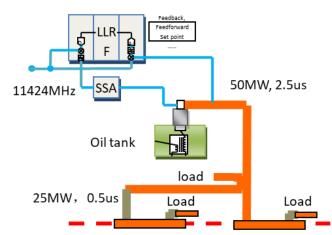

- Beam-laser synchronization: 10fs
- Real-time FEL lasing diagnostics

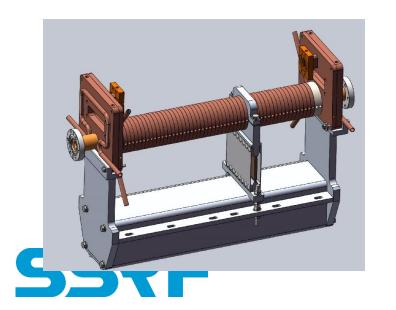


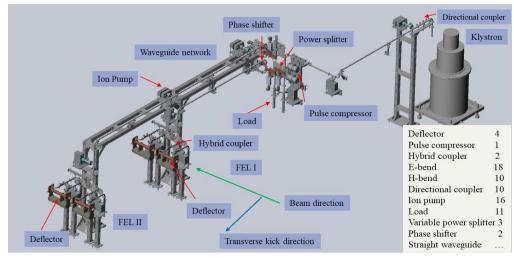


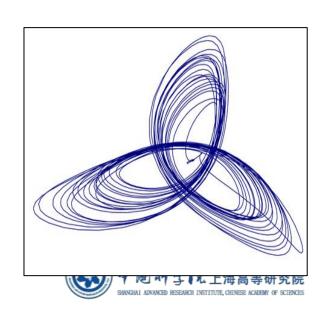

RF design of deflecting cavity

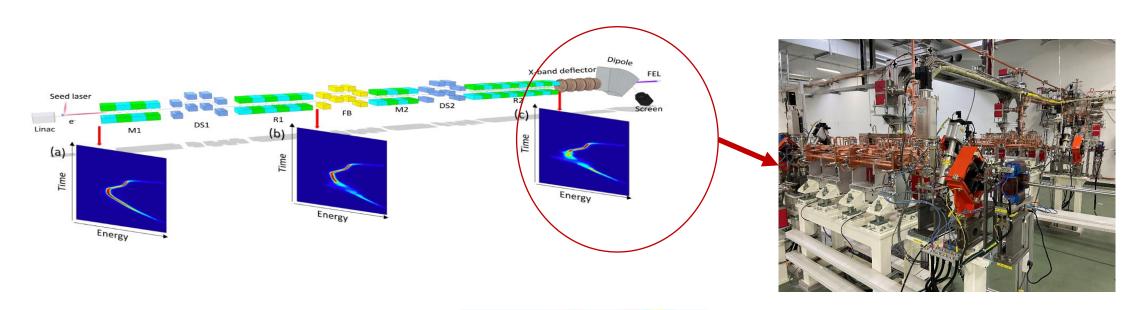
RF mode in the deflector is mixed with TM11 and TE11, called HEM11. TM11 is located in de the middle of cell, and TE11 is located on the iris tip. The structure is constant impedance.

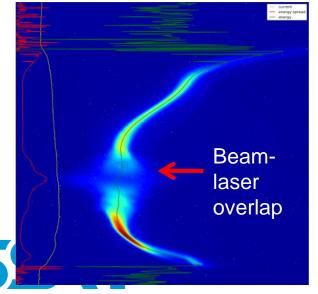


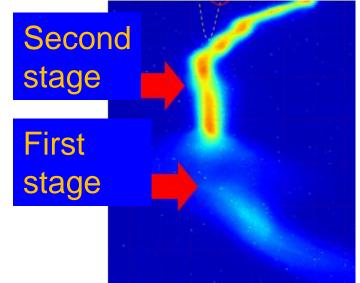


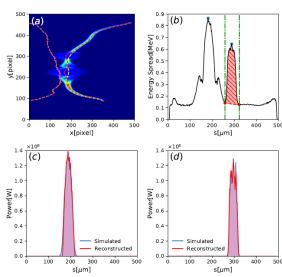

X-band deflecting cavities in SXFEL


- Dual-coupler design for new deflector
- ☐ One power unit for SXFEL
- Two deflector units for SXFEL

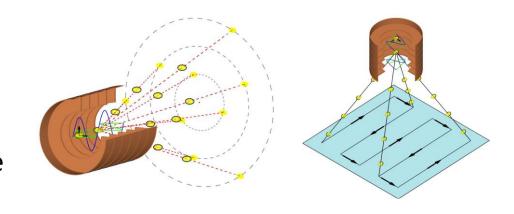


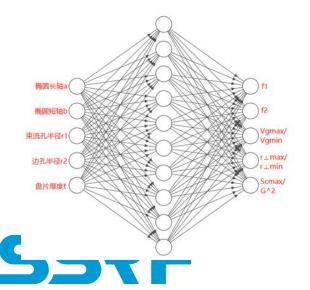


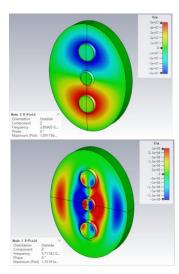


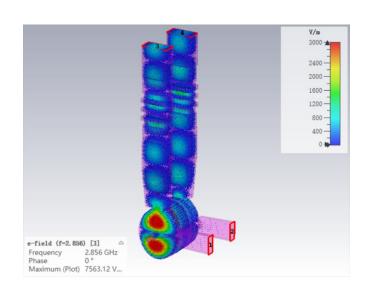


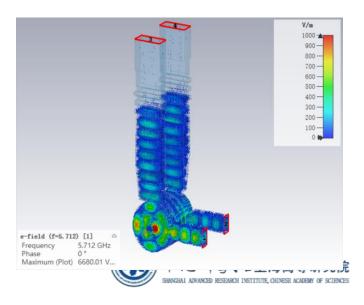
Beam-laser overlap and lasing feature real-time diagnostics at SXFEL



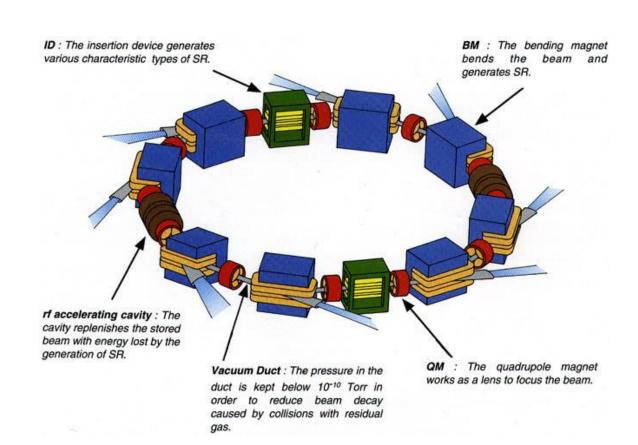


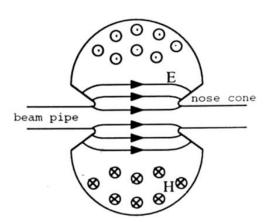

New Dual-mode deflector for variable polarization

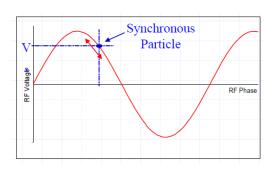

- 1. HEM01 on 2856 MHz, HEM02 on 5712 MHz
- 2. 6-D (x, x', y, y',z, z') Tomography, FLASH scanning
- 3. Neural network and MOGA for optimize the RF structure
- 4. Two-port for coupling two modes independently.



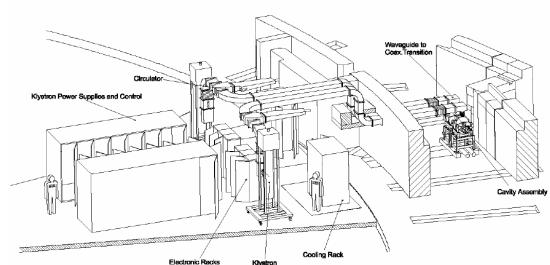
PRAB Editor's suggestion



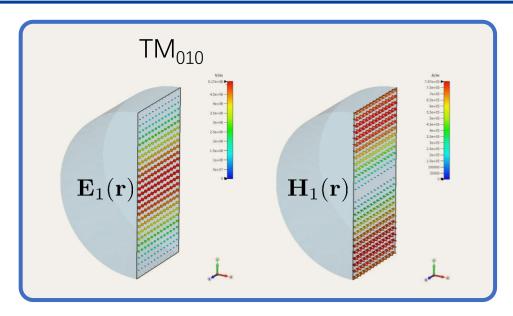


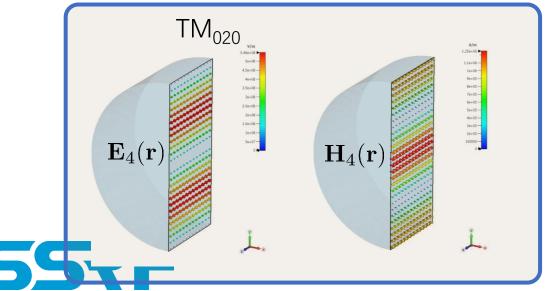

Some types of RF cavity

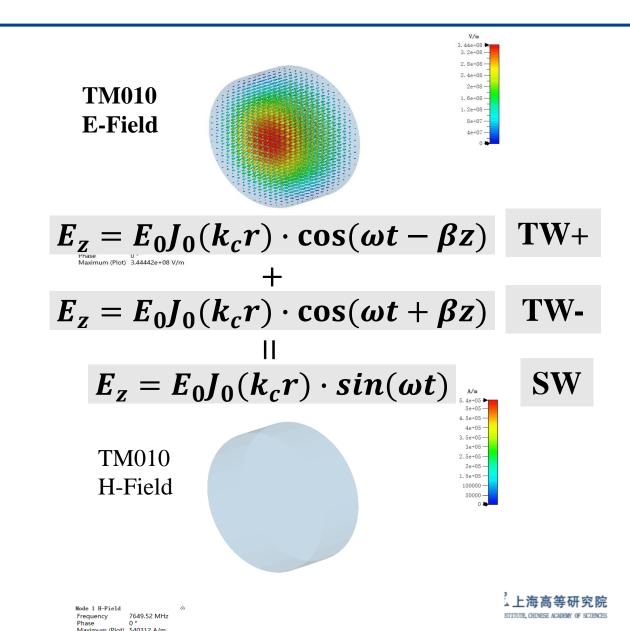
- □ Accelerating structures
- □Deflecting RF cavity
- **□NC** Single-cell RF cavity


Normal conducting single-cell RF cavity for light source

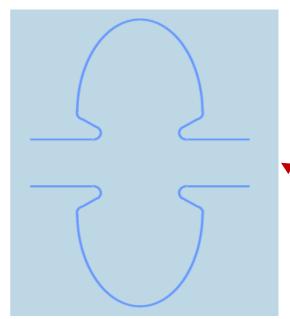
$$V_{rf} = V_c \sin(\omega_{rf} t + \phi)$$

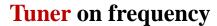

Function of RF cavity in light source

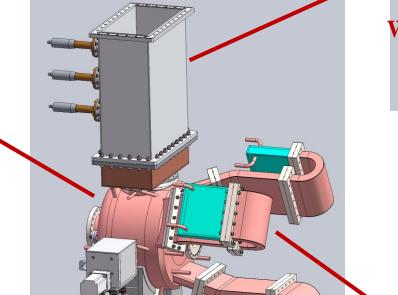

- □ Delivers the energy to electrons for compensating the energy loss due to Synchrotron radiation and interactions with beam chamber impedance, or ramping the electron beam to higher energy;
- Establishes RF voltage to capture and focus the electrons into bunches;
- □ Controls beam parameters, such as bunch length, beam lifetime, etc.;
- □ Provides damping effects to the electron motions by synchrotron radiation and RF acceleration.



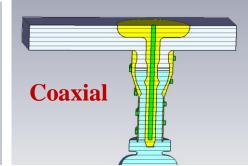
Standing wave "Pillbox" model of single-cell RF cavity

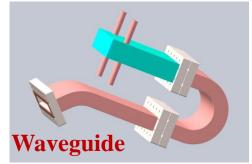




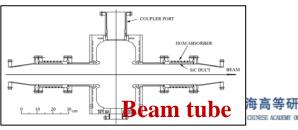

Some key components of RF cavity

Main cavity, high R/Q





Coupler, power input



HOM damper, three types

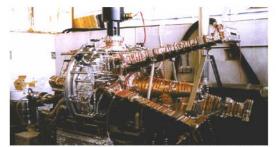
Some key parameters of RF cavity

Shunt impedance
$$R = \frac{V_c^2}{P_c} = \frac{(E_0 \cdot L)^2}{P_c}$$

Effective Shunt impedance
$$R_s = \frac{V_e^2}{P_c} = \frac{(E_0 \cdot T \cdot L)^2}{P_c} = R \cdot T^2$$
 T: Transition factor

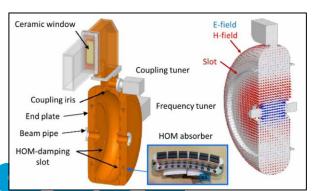
Quality factor
$$Q_0 = \frac{\omega U}{P_c}$$

$$Q_0 = \frac{\omega U}{P_c}$$


Normalized impedance
$$R/O = \frac{V_c^2}{\omega II}$$

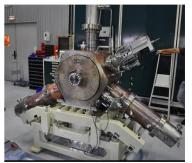
$$R/Q = \frac{V_c^2}{\omega U}$$

Some typic single-cell RF cavities

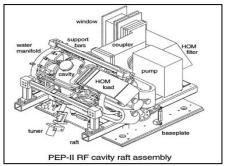


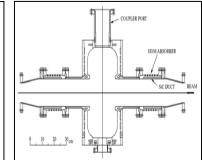
Daphne cavity, 368.2 MHz, 250 kV, 2 MΩ, L=1.9m

KEK ARES cavity, 509 MHz, 500 kV, 1.7 MΩ


Spring-8 TM₀₂₀

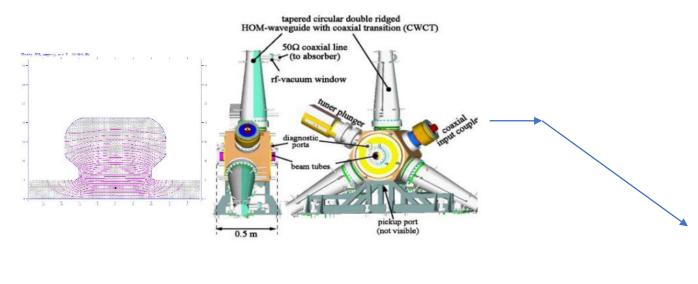
BESSY-II 500MHz

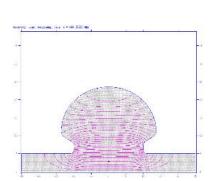



ESRF 352.2 MHz

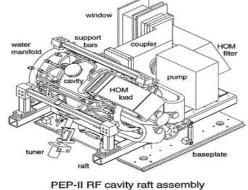
PEP-II 476MHz

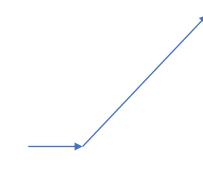
KEK-PF 500MHz

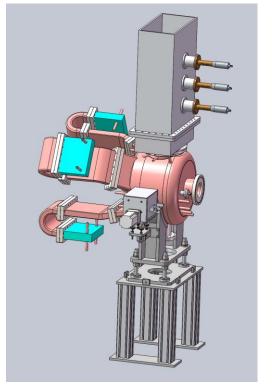


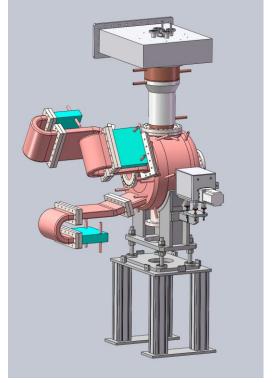


NC Cavities	f ₀ MHz	V _{ey} kV	$oldsymbol{R_s} oldsymbol{M}oldsymbol{\Omega}$	Q_0	P _{cy} kW	L m	f _{HOM} MHz	Max.	f _{HOM} ⊥ MHz	Max. R⊥
PEP II	476.	850.	3.8	32400	103.	~1.5	1295.	kΩ 1.83	1420.	kΩ/m 144.
DAPHNE	368.2	250.	2.	33000	16.	1.9	863.	259.	-	-
ARES	509.	500.	1.75	118000	72.	~1.1	696.	1.35	989.	10.
VEPP2000	172.1	120.	0.23	8200	29.	0.95	246.0	0.4		<10.
DUKE-2	178.5	730	3.46	39000	77	3.16	-	-	-	-
KEK-PF	500.	785	3.45	39500	90.	1.4	791.	1000.	792.	5100.
ASP/Toshiba	500.	750	3.8	40400	75.	1.0	790.	25.	803.	8500.
BESSY	500.	735.	3.4	29600	80.	0.5	670.	11.	1072.	54.

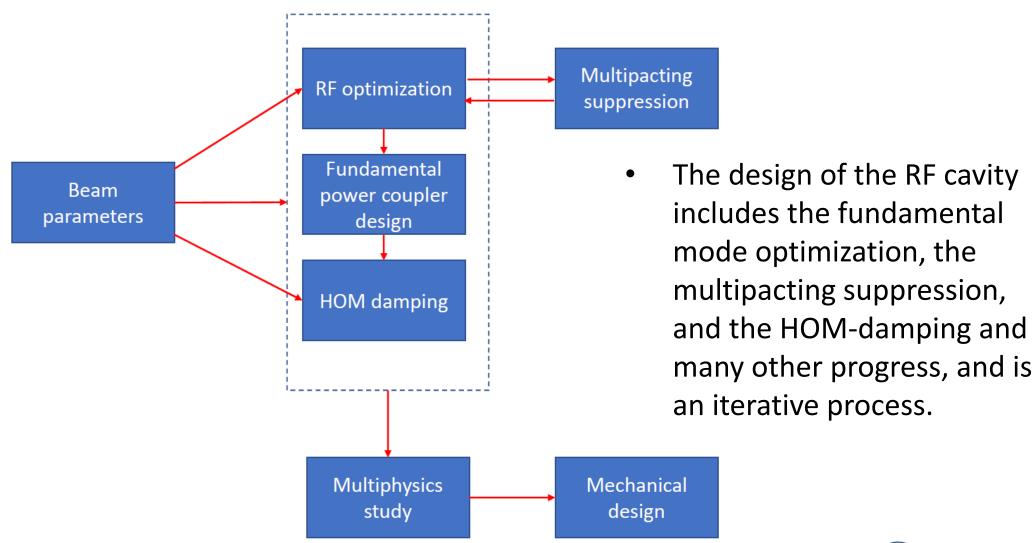

Example on new R&D at SARI: BESSY + PEP-II

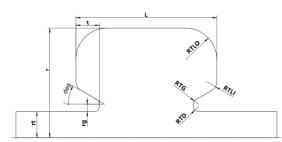

Bessy Cavity

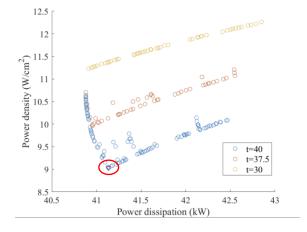


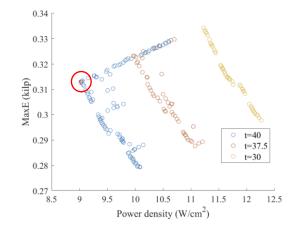

557F

Bessy Cavity + PEP-II HOM, two types of coupler



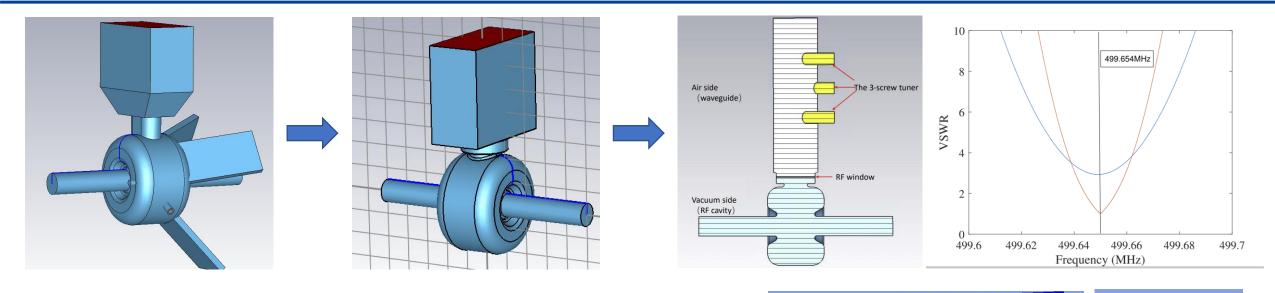

Design of the RF cavity


Design of the RF cavity —— MOGA

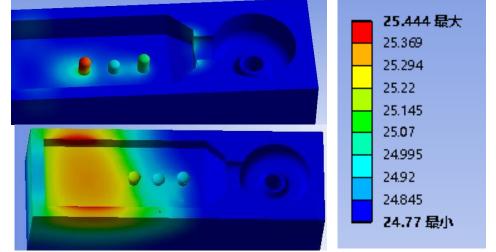

Multi-objective evolutionary algorithm for the cavity optimization

Objective	Constraint
With V*T=600kV	RF frequency 499.65~0.2MHz
Minimize P	Cavity radius<30cm
Minimize Pden	Beam tube=100mm
Minimize E	

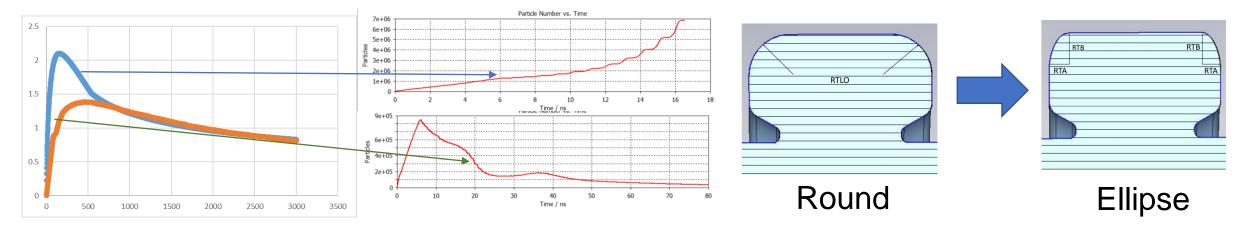
	Optimized		Origin	
Frequency	499.654MHz	Z	$499.654 \mathrm{MHz}$	
Voltage	$600 \mathrm{kV}$			
R/Q	114		96.79	
Transit time factor	0.746		0.847	
Shunt impedance	$4.37M\Omega$		$3.34M\Omega$	
Power loss	$41.19 \mathrm{kW}$	4	$53.55 \mathrm{kW}$	
Max Power density	$9W/cm^2$	7	$16W/cm^2$	
MaxE	$6.2 \mathrm{MV/m}$		$7.5 \mathrm{MV/m}$	

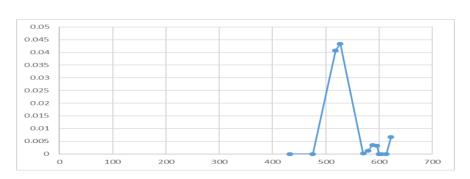


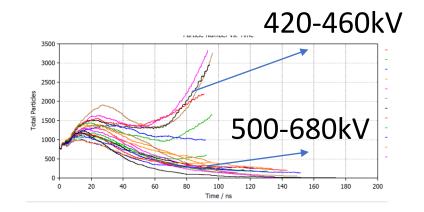
• Positive between power dissipation and power density

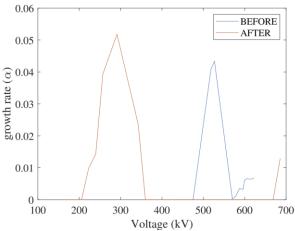

Maximum electric field and power density are mutually exclusive.

Design of the coupler

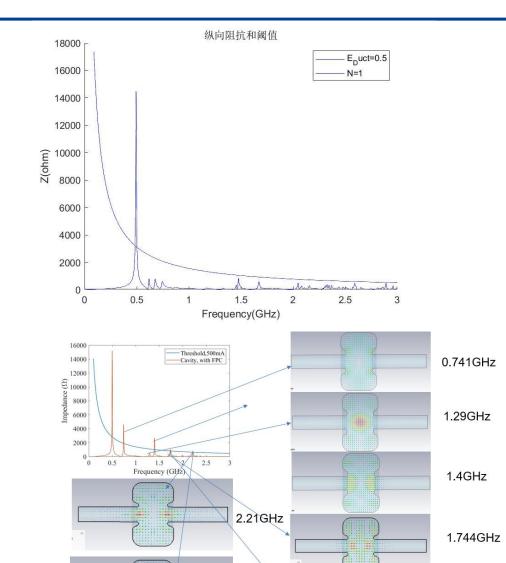

- Rectangular waveguide coupler, with circular ceramic RF window.
- Preserve the possibility of the coaxial coupler (iteration design)
- The function of adjustable coupling is realised by adopting a 3-screw tuner
- Simulation shows that the temperature rises little in the 3-screw tuner.

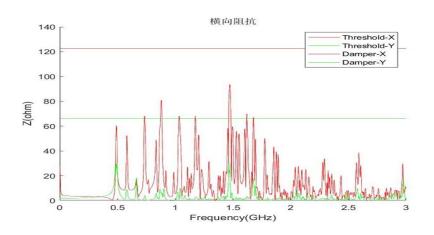





Multipacting

- Simulation of the multipacting in the CW cavity
- SEY in CST particle studio
- Modify the geometry of the cavity to move the multipact area

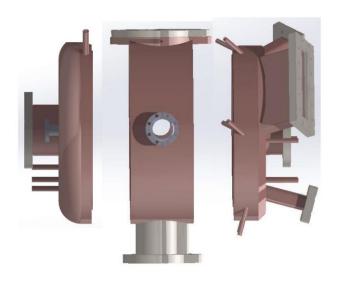


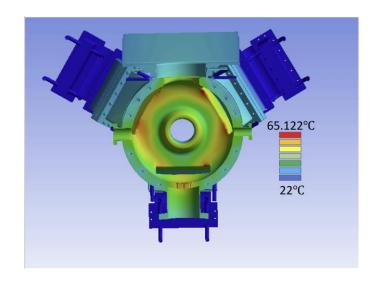


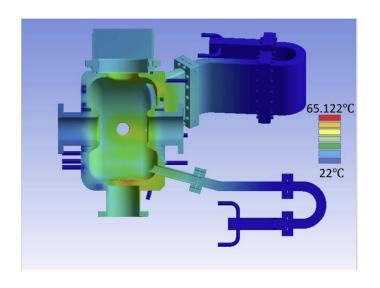
HOM-damping

2.23GHz

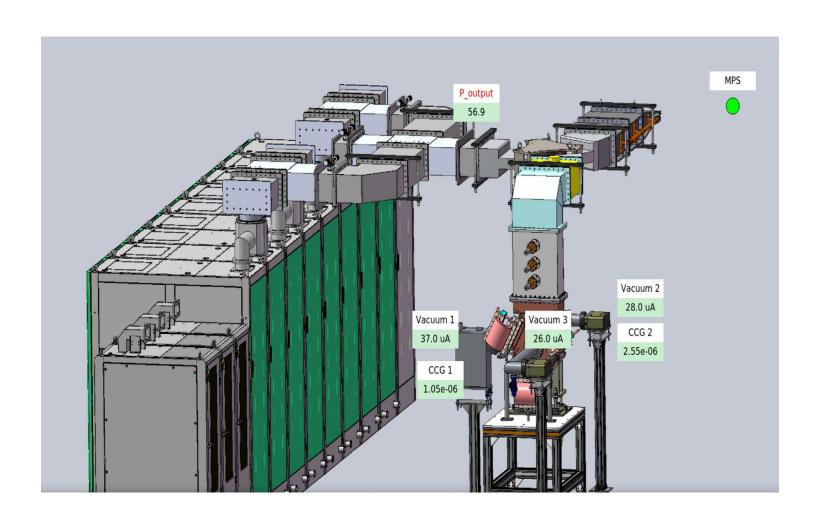
1.749GHz 《於上海高等研究院

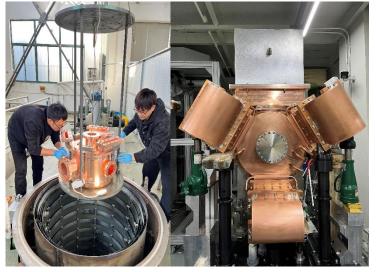



$$Z_{longitudinal}^{threshold} = \frac{1}{Nf_{HOM}} \frac{2EQ_s}{eI\alpha\tau_L} \qquad Z_{transverse}^{threshold} = \frac{1}{Nf_{rev}} \frac{2E}{eI\beta_{trans}\tau_{trans}}$$

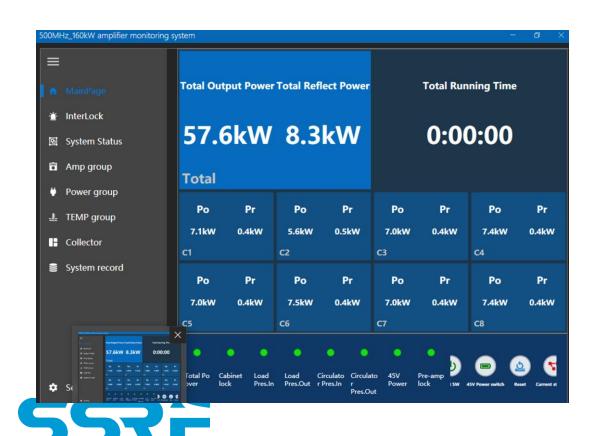

Mode frequency	R/Q	Q	$R(M\Omega)$
$754 \mathrm{MHz}$	37.79	32500	0.613
$1305 \mathrm{MHz}$	9.14	63700	0.291
$1420 \mathrm{MHz}$	20.99	35700	0.375
$1768 \mathrm{MHz}$	5.51	41100	0.113
$1821 \mathrm{MHz}$	5.48	58600	0.161
$2023 \mathrm{MHz}$	3.21	89700	0.144
$2127 \mathrm{MHz}$	1.29	60600	0.0392

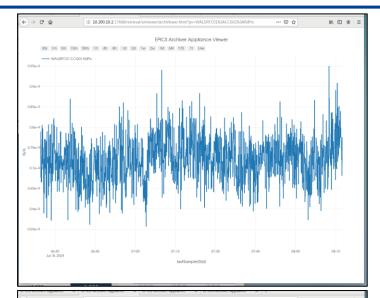
Multiphysics analyzation

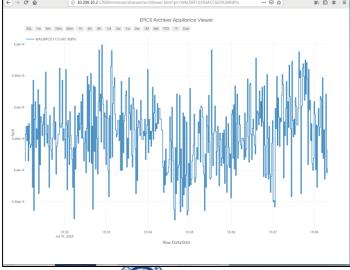



- Highest temperature rise: 44K, at the corner of the HOM load
- Deformation caused by the temperature rise will result in the frequency shift by 282kHz
- The frequency shift will be corrected by the tuner

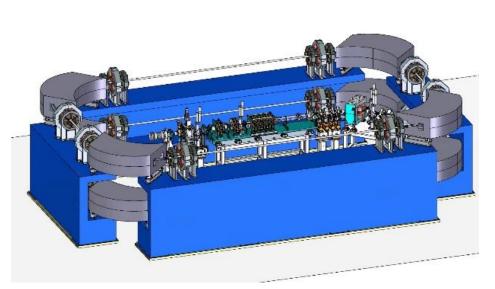
Fabrication and high power test



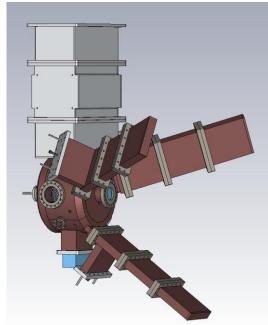



The results of high power test

- □ Cavity voltage: 600 kV (only 40% duration, 20kW)
- RF stability: better than 0.1%, 0.1 degree (rms)
- Vaccum: $7*10^{-10}$ torr (static), $5*10^{-9}$ torr (power on)

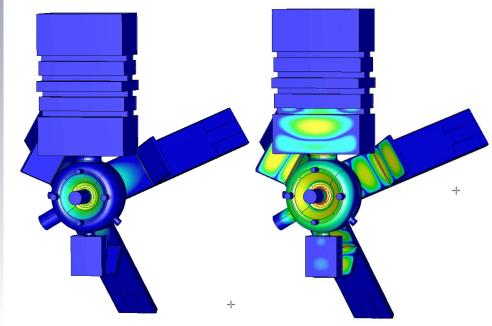

New dual-mode cavity design for compact SR

- Compact light source needs both main cavity and 3rd harmonic cavity
- Dual-mode only needs one straight section


Superposition field of main RF field and harmonic RF filed RF field seen by the bunch for main RF and higher harmonic cavities $E_z = \underbrace{E_1 \cos(kz) \cdot \sin(\omega t + \varphi_0)}_{} + \underbrace{E_n \cos(nkz) \cdot \sin(n\omega t + \varphi_n)}_{}$

RF voltage seen by the bunch for main RF and higher harmonic cavities

$$V(\phi) = V_1 cos(\omega t + \phi_s) + V_n cos(n\omega t + n\phi_n)$$



TM010 500MHz

TM020 1.5GHz

Thanks for your attention!