

# Concept of Control System of Gradient Adjustable Permanent Magnet Quadrupole

# CHAIYUT PREECHA INSTITUTE OF HIGH ENERGY PHYSICS CHINESE ACDEMY OF SCIENCES





#### **INTRODUCION**

Why are permanent magnets interesting?

- Conventional electromagnets consume high energy and need more auxiliary system.
- The new generation accelerator focus on energy efficiency.

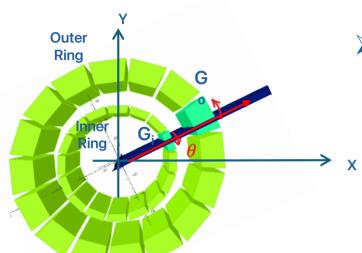
Supports the "green" accelerators drives demand for sustainable alternatives.





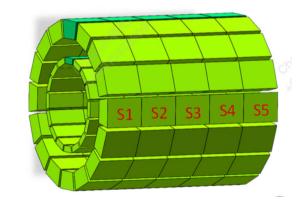


# **DESIGN PARAMETER**


| Parameter                                      | Symbol           | Unit      | Value      |
|------------------------------------------------|------------------|-----------|------------|
| Magnet bore diameter                           | $\phi$           | mm        | ≥ 86       |
| Effective magnet length                        | $L_{eff}$        | mm        | ≥ 200      |
| Maximum magnetic field gradient                | $G_{max}$        | T/m       | ≥ 10.6     |
| Gradient adjustment range                      | $\Delta G$       | T/m       | 1.8 ~ 10.6 |
| Gradient adjustment accuracy                   | $\Delta G_{min}$ | T/m       | ≤ 0.002    |
| Inner-outer ring rotational accuracy           | $\Delta 	heta$   | mrad      | ≤ 0.08     |
| Good field region radius                       | GFR              | mm        | 12         |
| Field quality in good field region @ $G_{max}$ | Bn/B2            | $10^{-4}$ | < 5        |

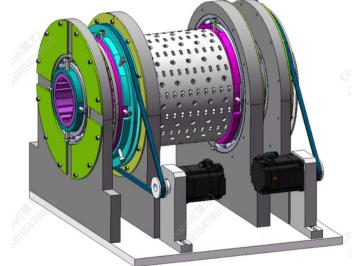


#### **ADVANTAGES**

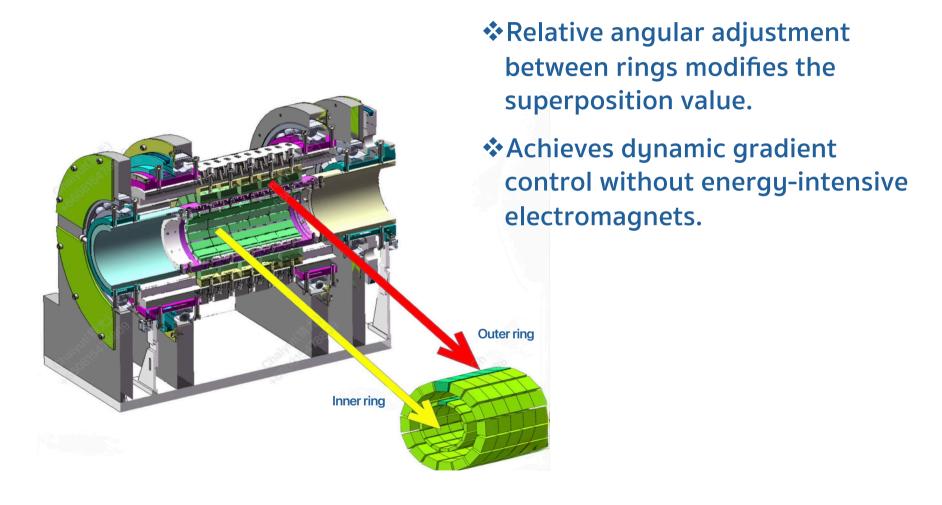

- High precision and real-time control
- **Energy-efficient**
- User-friendly interface and practical implementation
- Suitable for flexible accelerator applications

## **MAGNET STRUCTURE**




- **▶** Permanent Magnets as a Solution:
  - Eliminate electric excitation, reducing energy consumption.
  - Compact, stable, and efficient magnetic fields.

- ➤ Gradient-Adjustable PMQ:
  - Uses double Halbach ring structure for tunable field gradients.




#### **METHODOLOGY**

- > Synchronizing dual motorized controls involves controlling two motors to move with each other.
- The system typically operates in a closed-loop feedback control, where the sensor provides real-time feedback to the controller, allowing for continuous adjustments.
- ➤ Inner & outer ring independently rotation enables real-time magnetic field adjustment.



# **MECHANICAL**



#### **COMPONENT**

#### **≻** Motor



The motorized system is a crucial component for adjusting the magnetic gradient.

#### > Rotational encoder:



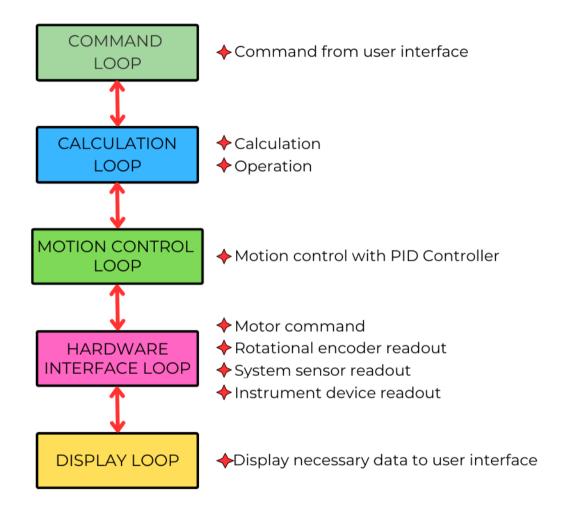
This device is used to measure angular position, with rotational encoders being common instruments that provide precise feedback on angular displacement.



## **SYSTEM STRUCTURE**



This figure illustrates the structure of the magnetic gradient adjustment system.


#### **PROGRAMMING**

## Programing based on LabVIEW

In this research, LabVIEW will be used to implement the overall control, interfacing with the hardware (motors, sensors, etc.) and providing a user-friendly interface for setting target positions, monitoring current positions, and controlling the system in real time.



#### **PROGRAMMING**



#### Programming-loop structure configuration

#### REFERENCE

- 1 R. Fielder, I.P.S. Martin, A.R. Bainbridge. "Testing of a ZEPTO Tunable Permanent Magnet Quadrupole at Diamond Light Source." 14th Intternational Particle Accelerator Conference. Venice, Italy: JACoW Publishing, 2023. 3874-3877.
- J. Völker, V. Duirr, P. Goslawski, A. Jankowiak, M. Titze. "Variable Permanent Hybrid Magnets for the BESSY III Storage Ring." 13th International Particle Accelerator Conference. Bangkok, Thailand: JACoW Publishing, 2022. 2763-2766.
- A. R. Bainbridge, A. Hinton1, N. Krumpa, B. J. A. Shepherd, I. P. S. Martin, W. Tizzano. "Construction and Measurement of a Tunable Permanent Magnet Quadrupole for Diamond Light Source." 13th International Particle Accelerator Conference. Bangkok, Thailand: JACoW Publishing, 2022. 2424-2427.
- 4 F. Marteau, A. Ghaith, P. N'Gotta, C. Benabderrahmane, M. Valléau, C. Kitegi, A. Loulergue, J. Vétéran, M. Sebdaoui, T. André, G. Le Bec, J. Chavanne, C. Vallerand, D. Oumbarek, O. Cosson, F. Forest, P. Jivkov, J. L. Lancelot, M. E. Couprie. "Variable high gradient permanent magnet quadrupole." Applied Physics Letters (2017): 253503-1-5.





# THANK YOU FOR YOUR ATTENTION

# 谢谢您!