

The 8th International School on Beam Dynamics and Accelerator Technology (ISBA25) September 1-10, **2025**, Shanghai Advanced Research Institute (SARI), Shanghai, China

Dynamics Design and Optimization of CiADS Muon Beamline

Muon Science and Technology application platform at CiADS (MuST-CiADS)

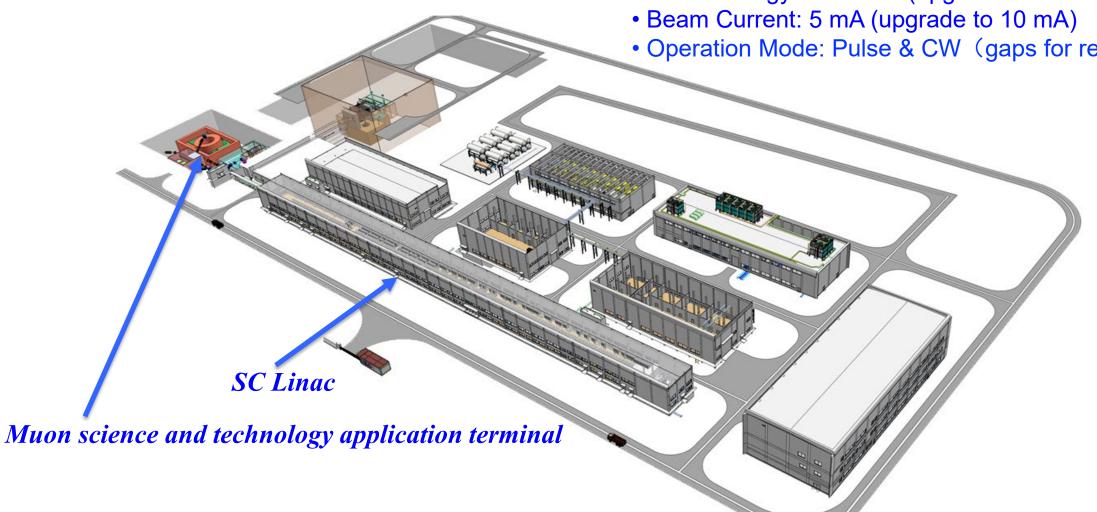
Li Jincheng,

Institute of Modern Physics, Chinese Academy of Sciences, China

Outline

- CiADS project and design specifications
- Dynamics design and optimization of CiADS muon beamline
- Summary

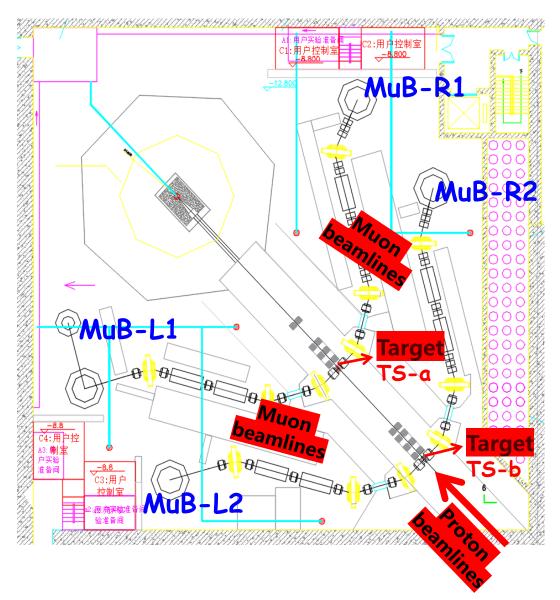
CiADS Project and Design Specifications



CiADS project and design specifications

China Initiative Accelerator Driven System (CiADS)

- Beam Energy: 500 MeV (upgrade to 2.0 GeV)
- Operation Mode: Pulse & CW (gaps for reactor monitor)

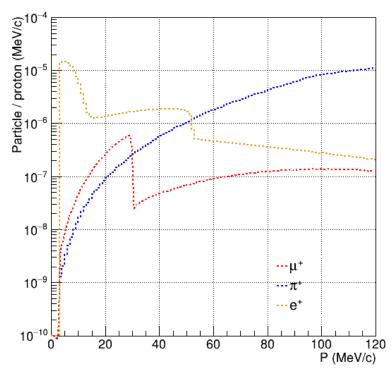


Plan for CiADS muon source

- **Objective:** Chinese first continuous muon source based on a superconducting linear accelerator beam. Pushing muon intensity up to 1×10^9 (or even 1×10^{10}) μ /s, in a long run.
- □ Construction plan in two phases:

Phase	Target	Muon type	Main applications	
Phase-I 2025~2028	Target Station –	R1: surface	μSR	
	a a	L1: surface/decay/slow	μSR/MIXE/part. phys.	
Phase-II 2029~2032	Target Station – b	R2: surface	μSR	
		L2: surface/decay/slow	μSR/MIXE/part. phys.	

Dynamics Design and Optimization of CiADS Muon Beamline


Challenges

LChallenges — √

Muon beamline entrance transverse phase space parameters (0-30MeV/c)

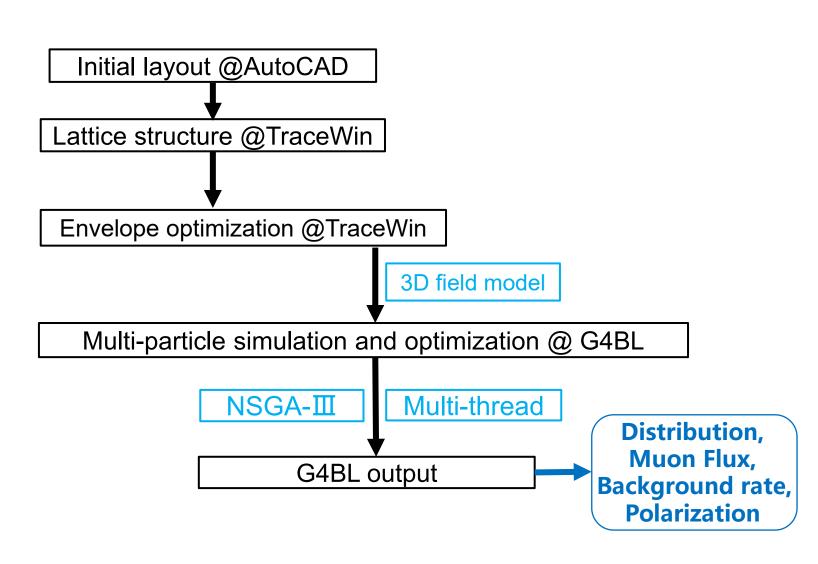
Parameters	Value
Mean momentum P_0 /momentum spread σ_P	23.0MeV/c / 5.3MeV/c
Horizontal position $< x > / \text{width } \sigma_x$	-9.01mm / 44.75mm
Horizontal divergence $\langle x' \rangle$ /width $\sigma_{x'}$	-142.9mrad / 744.8mrad
Horizontal normal rms emittance	5199.21 πmm·mrad
Vertical position $\langle y \rangle$ /width σ_y	0.02mm / 45.96mm
Vertical divergence <y'>/width σ_y'</y'>	0.54mrad / 754.04mrad
Horizontal normal rms emittance	5523.79 πmm·mrad
Mean polarizability	66.91%

Surface Muon beamline design parameter:

- Beam spot $\sigma_x \sim \sigma_v \sim 30 \text{mm}$
- Muon flux $10^9 \,\mu/s$ (or even $10^{10} \mu/s$)
- Polarization rate >90%
- Background rate < 1%

- Improve transmission efficiency
- Reduce beam size
- Lower background rate
- Increase polarization rate

Design and optimization framework

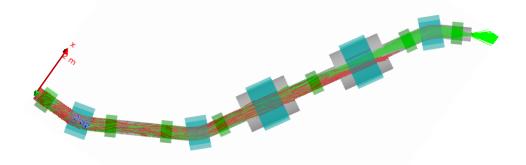


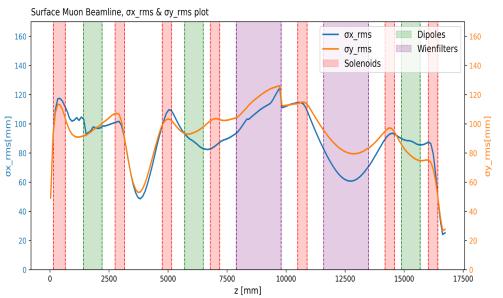
□ Design methodology

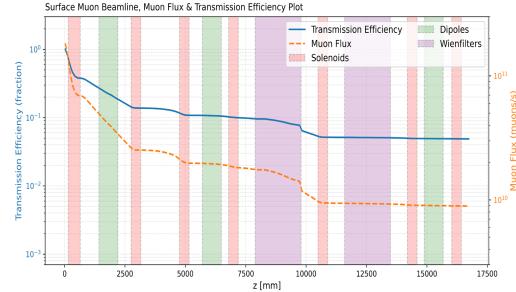
- Based on muon beamline type and terminal objectives, develop an empirical conceptual layout
- Conduct preliminary optical design,
 establish field models, and perform
 envelope optimization
- Execute many-objective optimization using G4BL and evolution algorithm (NSGA-III)

□ Continuous Improvements

- More design flexibility
- Higher iteration efficiency

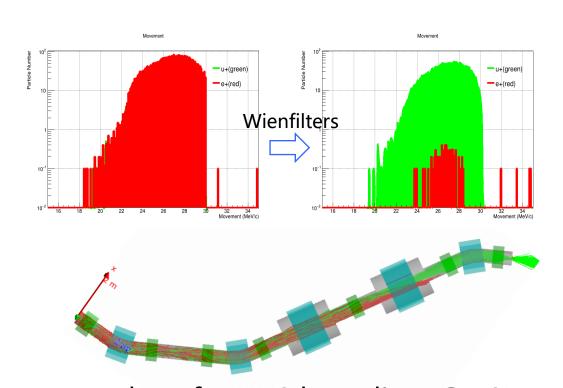

Surface Muon beamline design



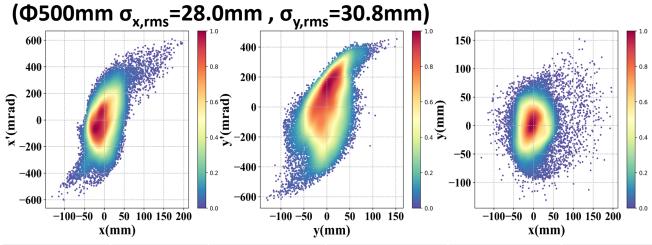

- Muon beam type: high-flux surface muon (<30MeV/c),
- Objective applications: µSR, high-precision muon physics
- **D** Beam bending: bending magnet configuration of "+ + -"

to balance space and shielding effectiveness

☐ *Focusing*: 6 transport solenoids



Muon beamline design


D Background separation: double Wien filters, background rate < 0.32%, Polarization $\sim 92\%$ ($\Phi 100$ mm)

Future plan of MUH2 beamline @ PSI:

- $^{\sim}1.13x10^{10}\mu^{+}/s$ at 28 MeV/c
- Beam spot at final focus: σx ~σy ~ 45 mm

Muon beamline exit transverse phase space distribution

Beam spot	Efficiency	Intensity	Momentum	Polarization	Background
		$(\mu + /s)$	(MeV/c)	rate	rate
Ф500mm	4.8%	8.8e9	26.7 ± 1.8	91.1%	<1.7%
Ф100mm	3.9%	7.2e9	26.8 ± 1.7	91.7%	<0.32%
Ф50mm	1.5%	2.8e9	26.8 ± 1.7	91.7%	<0.03%
Ф30mm	0.64%	1.2e9	26.8 ± 1.6	91.9%	<0.03%
Ф20mm	0.31%	5.7e8	26.8 ± 1.6	92.3%	<0.06%
Ф10mm	0.08%	1.5e8	26.8 ± 1.6	92.0%	<0.01%

[Andreas Knecht. PSI – future plans & extensions. EXA/LEAP 2024, Vienna, Austria.]

Summary

Summary

The CiADS superconducting linear accelerator offers the potential for building a continuous muon source with advanced performances.

The optimized performance of the surface muon beamline features a background rate below 0.4%, a polarization rate above 91%, and a flux of 7.2×10^9 muons per second within a $\Phi 100$ mm area, achieved through the application of G4BL and NSGA-III algorithm.

Thanks for your attention!