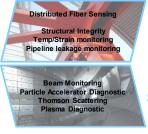
Digitizers Aug 2025

Agenda


- Company Introduction
- Product Overview and Specification
- Multi-Channel Acquisition
- Application Specific Firmware
 - FWPD : Pulse Detection
 - FWATD : Waveform Accumulation(Averaging)
 - FW2DDC : Digital Down Converter (Mixer)
 - DEVDAQ, DEV8DAQ : Development Kit



TSPD has been designing and manufacturing High-Performance Digitizers for over ~20yeas

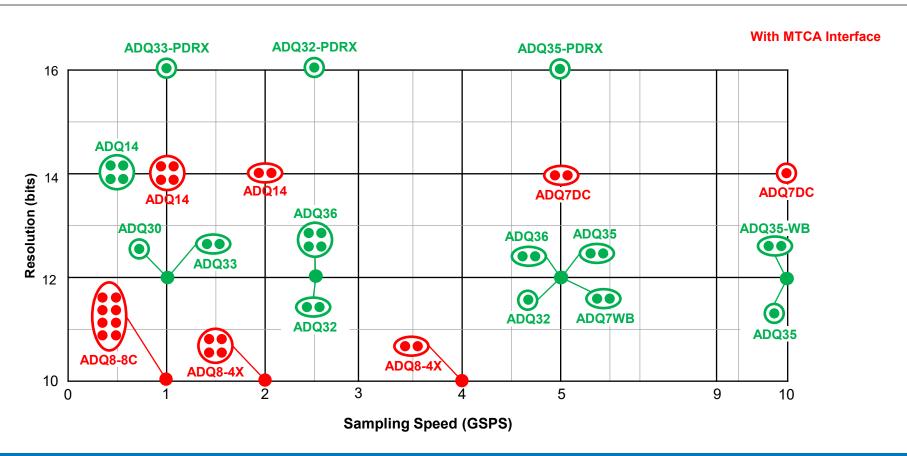
- High sampling rate (GSps) and high resolution (10-14b)
- Onboard pre-processing by Open field-programmable gate array (FPGA)
- · Offboard high data throughput to host PC
- Peer-to-peer streaming to graphics processing unit (GPU)
- · System design services for resource optimization

Lidar

TSPD Application Examples

TELEDYNE TECHNOLOGIES

- 5.64 billion USD in net sales (2023 annual report)
- Over 15,000 employees
- More than 70 office locations worldwide
- TSPD is a part of Teledyne Technologies and in Instrumentation segment



Product Overview

MTCA Product Specification

Device	Res	Ch	Sample Rate (GSPS)	Input Range	Input Bandwidth (GHz)	MTCA Datarate (Sustained)	Firmware	Notes
ADQ7DC	14	2, 1	5.0, 10.0	1.0Vpp	DC to 3.0	3.4 GB/s (Gen3)	FWATD, FWPD, FW2DDC, DEVDAQ	EPICS support
ADQ14DC (4C, 2X)	14	4(4C) 2(2X)	1.0(4C) 2.0(2X)	0.5Vpp (4C) 1.0Vpp (2X)	DC to 0.7(4C), 1.2(2X)	1.6 GB/s (Gen2)	FWATD, FWPD, DEVDAQ	EPICS support, No VG option, GPIO option as default
ADQ08-8C	10	8	1.0	0.25Vpp to 5Vpp programmable	DC to 0.5	1.3 GB/s (Gen2)	DEV8DAQ	Daisy Chain Trigger support
ADQ08-4X	10	4, 2	2.0, 4.0	0.25Vpp to 5Vpp programmable	DC to 1.0	1.3 GB/s (Gen2)	DEV8DAQ	Daisy Chain Trigger support

<Firmware>

DEVDAQ, DEV8DAQ:

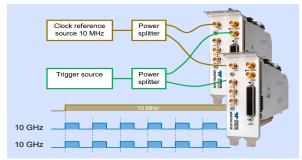
Development Kit for customers to implement their own logic.

AMD Synthesis tool is necessary.

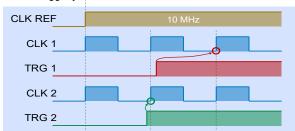
FWATD: Waveform Accumulation

FTPD: Pulse Detection

FW2DDC:


Digital Down Convert

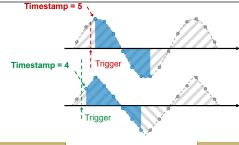
Multi-Channel Acquisition


Consideration1: Sampling alignment over multiple digitizers

Use Common 10MHz external clock(backplane or front panel) for sampling alignment across all digitizers. Jitter cleaner PLL available for approximately 200 fs jitter.

Consideration2: Trigger Jitter

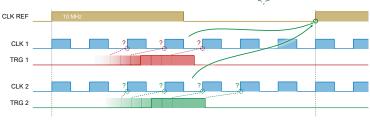
Record start timing could differ over multiple digitizers due to trigger jitter



Solutions for Trigger Jitter

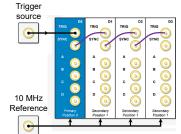
C2_s1:

Correction of record start by Timestamp


Timestamp can be utilized to identify and correct differences in record start times across multiple digitizers.

C2_s2:

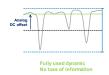
Phase-locked Trigger


External trigger source uses 10MHz digitizer reference clock. Digitizers synchronize the trigger with 10MHz reference clock.

C2_s3:

Daisy Chain trigger

Connect the trigger in a daisy chain

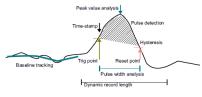


Application Specific Firmware : FWPD (Pulse Detection)

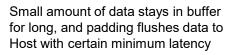
DC Offset

 Programmable DC offset allows unipolar signals to utilize the entire input range of the digitizer

Doubling dynamic range for uni-polar pulses


DBS & MA DBS tracks baseline fluctuations, adjusts the baseline to a user-defined target value, and suppresses pattern noise. For rapid baseline change, MA(Moving Average) is available.

Baseline is reference for threshold & trigger and needs to be stable


Peak
Detection &
Analysis

- Detect the pulse and calculate leading and training edges
- Analyze meta data(a pulse for peak value, pulse width and timing)

Meta data allows large reduction in amount of data to be transferred to Host, hence high throughput

Data collection & Latency Control Make records of data and control latency to get a minimum throughput with dummy data

Histogram

Generate histogram of peak value and pulse width

Histogram result is read out by ADQAPI

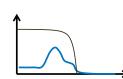
Example) ADQ7DC : 14bit, 10GSPS, ~430msec time period for monitoring, Ave pulse rate 600Mpulses/sec

Application Specific Firmware: FWATD (Advanced Time Domain)

DC Offset

 Programmable DC offset allows unipolar signals to utilize the entire input range of the digitizer

Analog DC offset


Baseline is reference for threshold

& trigger and needs to be stable

Doubling dynamic range for uni-polar pulses

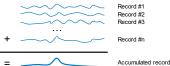
DBS

 DBS tracks baseline fluctuations, adjusts the baseline to a user-defined target value, and suppresses pattern noise

FIR digital filter reduces noise power outside of the frequency band of interest

Data Path Filter A frequency-selective digital filter helps reduce noise for input signals with known limited bandwidth without loss of signal information

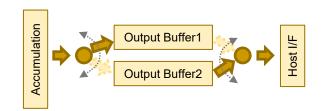
•The non-linear advanced threshold operation with filter is a complement to the succeeding WFA, tailored for rarely occurring weak pulses


Remove out noise under threshold

Threshold Operation

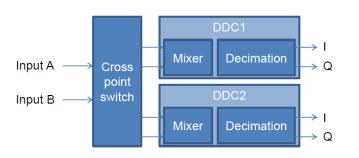
WFA

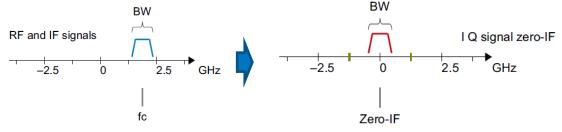
• Waveform averaging **(WFA)** reduces random noise via repeated measurements

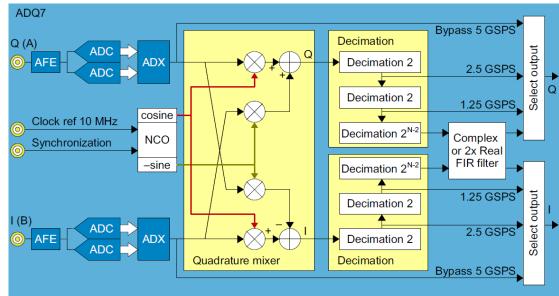


ADQ7DC: 2Msamples/record, accum count 18bit ADQ14: 2Msamples/record, accum count 16bit

Seamless Acquisition Dead-time free seamless accumulation and acquisition

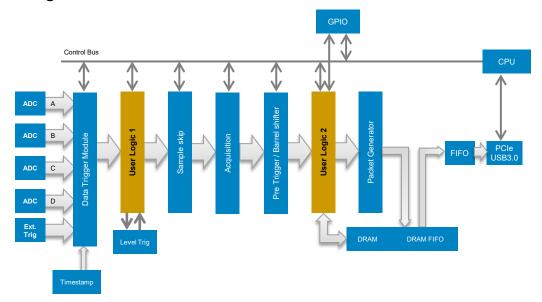

Example) ADQ7DC : 14bit, 10GSPS, ~2.1Msamples/record, ~262K waveform accumulation, dead time 32nsec

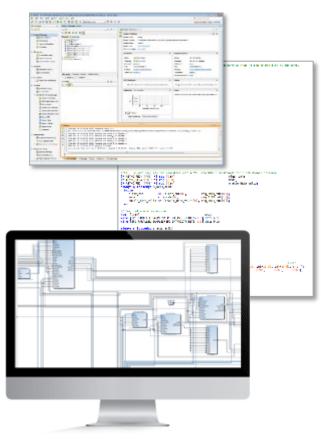

Double Buffer allows seamless accumulation and data transfer



Application Specific Firmware : Digital Down Converter (FW2DDC)

- Frequency down conversion by Numerical Controlled Oscillator(NCO) and DDC (Digital Mixer)
- Built-in decimation to reduce data
- Support multiple input modes
 - One IQ Input
 - Two Real Inputs
 - One Differential Input





FPGA Development kit(DEVDAQ, DEV8DAQ)

- "User Logic1" sees all data stream, and "User Logic2" sees only triggered records.
- With those two blocks, customers can focus on their algorithm

European Offices

Linköping, Sweden (HQ)

Teknikringen 8D, SE-583 30 Phone: +46 13 465 06 00 Fax: +46 13 991 30 44

E-mail: SPD Sales@Teledyne.com

Global Sales

702 00, Ostrava, Czech Republic Phone: +420 775 070 537

E-mail: Feras. Moualla@Teledyne.com

Düsseldorf, Germany

Phone: +49 1514 435 7150

E-mail: Kacper.Matuszynski@Teledyne.com

Geneva, Switzerland

Phone: +41 78 845 5657

E-mail: laurent.weber@Teledyne.com

North America Offices

Eastern Region

700 Chestnut Ridge Road Chestnut Ridge, NY 10977 Phone: +420 775 070 537

 $\hbox{E-mail: SPD_Sales@Teledyne.com}$

Western Region

765 Sycamore Drive Milpitas, CA 95035 Phone: +1 415 533 13 41

E-mail: Joe.Sharp@Teledyne.com

APAC Sales Offices

Tokyo, Japan

Houbunsyafuchu Blg 3F, Midori-cho 3-11-5, Fuchu-shi Phone: + 81 (0) 80 4675 7959

E-mail: yoshikazu.kawamata@teledyne.com

