The E31 spectroscopic experiment of Λ(1405) via in-flight d(K⁻,n) reaction at J-PARC K1.8BR

Shingo Kawasaki for the J-PARC E31 collaboration RCNP, Osaka University

Contents

- Motivation
- Experiment
 - J-PARC E31 experiment
 - J-PARC E31 experiment set up
- Analysis of d(K-,n) $\Sigma^0 \pi^0$ spectrum
 - Analysis procedure
 - BG estimation
 - Comparison w/ theoretical calculation
 - Conclusion

Motivation

Investigation of Λ(1405)

 $\Lambda^*(1405) \text{ [uds]}$ I = 0,J^p = $\frac{1}{2}^-$,m=1405.1 $\pm^{1.3}_{1.0}$ (MeV)<N*(1440) $\Gamma = 50 \pm 2$ (MeV) (PDG-2012)

• 3 quark ? $\overline{K}N$ bound state ?

 Image: The system
 Image: Kin the system</the system</th>
 Image: Kin the system</th

 2 pole structure of Λ(1405) with K
 K
 N, πΣ resonant states by chiral unitary model

• Investigation of $\Lambda(1405)$ spectrum shape in $\overline{K}N \rightarrow \pi\Sigma$

The reaction cannot occur in free space

The reaction is expected to enhance the line shape at around the $\overline{K}N$ pole (~1420 MeV/c²)

J-PARC E31 experiment

• $\Lambda(1405)$ measurement via in-flight $d(K^{-}, n)$

forward scattered neutron 1.2~1.3 GeV/c

n

- Identification of final isospin state
 - $\Sigma^{\mp}\pi^{\pm}$ have I =0 and I =1 amplitude
 - $\Sigma^0 \pi^0$ is I =0 purely
 - We will measure all the decay mode to decompose isospin amplitude

X
$$\rightarrow \Sigma^{0}\pi^{0}$$
 \leftarrow I = 0
 $\rightarrow \Sigma^{-}\pi^{+}$ $(\Lambda(1405))$
 $\rightarrow \Sigma^{+}\pi^{-}$ I = 1
 $\rightarrow \Lambda\pi^{0}$ \leftarrow I = 1
 $(\Sigma(1385))$

J-PARC E31 experiment set up

K1.8BR spectrometer

beam line spectrometer

AND	1		
E31 Run		Primary Beam Intensity	Excuted/Proposed
pre	May, 2015	43 kw	~5 %
1st	May-June, 2016	44 kw	~30 %
2nd	JanFeb., 2018	51 kw	~100%

$d(K-,n)''\Sigma^0\pi^0''$ analysis procedure

$$\Sigma^0 \pi^0 \to \Lambda \gamma \pi^0 \to p \pi^- \gamma \pi^0$$

- ∧(1405) is recoiled backward
 ⇒ the decay proton emitted backward is detected by backward detectors
 ∧(1405)
 K-
 - Reconstruction of Λ from p π^-
 - Identify $d(K^-, n \Lambda)$ " $\pi^0 \gamma$ " missing mass

Identification of backward proton

Beta vs dE (BPD)

Reconstruction of Λ is a success

BG cut from Forward Σ -

- Neutron from Σ event is reconstructed in backward proton event
- This region is cut

Possible contamination from $\Sigma^+\pi^$ missing mass d(K-, n^π⁻)'X' GeV/C² 1.8 BG : $K^-d \rightarrow \Sigma^+\pi^-$ 10 1.6 **p** π⁰ 1.5 π⁰ 1.3 BPD n 1.2 10 **Backward** detectors 1.15 1.05 2 25 Invariant mass (p, π^{-}) GeV/C²

- $\Sigma^+\pi^-$ event is reconstructed in backward proton event
- $\Sigma^+\pi^-$ event is separated from Λ event

Selection of $\pi^0 \gamma$ region

🕂 (Data)

Hist(SIM)

- K⁻d \rightarrow n $\land \pi^0$
- $K^-d \rightarrow n \Sigma^0 \pi^0$
- K⁻d → n Λ (ππ)⁰

Selection of $\pi^0 \gamma$ 0.18 < d(K⁻, nA) < 0.3 [GeV/c2]

 π^{0} , $(\pi\pi)^{0}$ contamination in d(K-,n) $\Sigma^{0}\pi^{0}$

Contribution of π^0 , $(\pi\pi)^0$ is small (1.35~1.5 [GeV/c2]) ¹⁴

BG estimation from sidebands of Λ

Cross Section of $d(K^{-},n)\Sigma^{0}\pi^{0}$

16

Theoretical calculation on d(K⁻,n)πΣ

- 2 step process
 - D. Jido, E. Oset, and T. Sekihara, EPJA49, 95(2013)
 - J. Yamagata-Sekihara, T. Sekihara, and D. Jido, PTEP, 2013, 043D02
 - H. Kamano and T.-S. H. Lee, PRC94, 065205(2016)
- Faddeev calculation
 - K. Miyagawa and J. Haidenbauer, PRC85,065201(2012)
 - K. Miyagawa, J. Haidenbauer, and H. Kamada, PRC97, 055209(2018)
 - S. Ohnishi, Y. Ikeda, T. Hyodo, and W. Weise, PRC93, 025202(2016)

Comparison w/ theoretical calculation

H. Kamano et al., Phys. Rev. C 94, 065205 (2016) Res. convoluted

Comparison w/ theoretical calculation

H. Kamano et al., Phys. Rev. C 94, 065205 (2016) Res. convoluted

Summary

- We have performed E31-2nd, and obtained d(K-,n)Σ0π0 spectrum shape
- Overall behavior of d(K-,n)Σ0π0 spectrum seem to be explained well by the theoretical calculation w/ 2 step process.
- Λ(1405) pole information is expected to be extracted by the spectrum shape in 2 step process.