ϕ and J/Ψ mesons in cold nuclear matter

Javier Cobos

Cátedra CONACyT, High Energy Physics Group, CINVESTAV México City, México.

8th International Conference Quarks and Nuclear Physics Tsukuba, Ibaraki, Japan. November 13-17, 2018

- 2 Effective Lagrangians approach
- 3 The quark meson coupling model

Results

- Nuclear matter
- Finite

5 Conclusions

- - E + - E +

Parts of this presentation are based on

- "Phi-meson mass and width in nuclear matter and nuclei" arXiv:1703.05367 [nucl-th] (Physics Letters B 771 (2017). 113-118)
- "Phi-meson nuclear bound states" arXiv:1705.06653 [nucl-th] Physical Review C 96 (2017) no.3, 035201.
- " η_c and J/Ψ -nuclear bound states" In Preparation.

In collaboration with

- Kazuo Tsushima–Laboratório de Física Teóorica e Computacional, Universidade Cruzeiro do Sul, São Paulo, Brazil.
- Gastão Krein–Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil.
- Anthony Thomas–Special Research Centre for the Subatomic Structure of Matter University of Adelaide, Adelaide, Australia.

- There has been much theoretical and experimental interest over the last few decades.
- There is still, however, experimental controversy in the measurements of the mass shift–specially for the ϕ .
- There are planned experiments at JLab, KEK, and GSI.
- Partial restoration of chiral symmetry at high densities.
- The mass shift of the ϕ -meson is related to the strangeness content of the nucleon.
- As the φ-meson is nearly pure ss state and gluonic interactions are flavor blind studying it (in nuclear matter) serves to test theories of multi-gluon interactions.
- Role of QCD van der Waals forces, which are believed to play a role in the binding of J/Ψ and other exotic heavy-quarkonia to matter.

- 4 回 ト - 4 回 ト

• We are interested in the vector-meson mass shift in nuclear matter

$$\Delta m_{\phi}^{*}=m_{\phi}^{*}-m_{\phi}^{\mathsf{vac}}$$

- m_{ϕ}^* is the ϕ meson mass in nuclear matter.
- $m_{\phi}^{
 m vac}=1020$ MeV its vacuum value
- We are also interested in the ϕ decay width in nuclear matter Γ_{ϕ}^* .
- Both will be computed from the ϕ self energy in a hybrid approach:
 - Effective Lagrangians.
 - Quark meson coupling (QMC) model (See talks of K. Tsushima, P. Hutauruk, and T. Miyatsu)

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

Effective Lagrangians approach

• $\Pi_{\phi}(p)$ renormalises the ϕ meson mass:

$$D_{\mu
u}(p) = rac{1}{p^2 - m_\phi^2 - \Pi_{\phi(p)}} \left(g^{\mu
u} - rac{p^\mu p^
u}{p^2}
ight) + rac{p^\mu p^
u}{m^4}$$

• Both m_{ϕ}^* and Γ_{ϕ}^* will be computed from $\Pi_{\phi}(p)$.

 We use an effective Lagrangian to compute the φ meson self-energy Π_φ(p):

$$\mathcal{L}_{\phi K \overline{K}} = \mathrm{i} g_{\phi} \phi^{\mu} \left[\overline{K} (\partial_{\mu} K) - (\partial_{\mu} \overline{K}) K \right],$$

where $K = \begin{pmatrix} K^{+} \\ K^{0} \end{pmatrix}, \overline{K} = \begin{pmatrix} K^{-} \overline{K}^{0} \end{pmatrix}.$
• At order g_{ϕ}^{2} :

• At order g_{ϕ}^2 • $\Pi_{\phi}(p) = -\frac{1}{3} \Pi_{\phi}^{\mu\nu}(p).$

- $\Pi_{\phi}(p)$ acquires an imaginary part when $m_{\phi} > 2m_K$ ($m_{\phi} = 1020$ MeV, $m_K = 497$ MeV).
- The φ meson mass and decay width in vacuum (m_φ, Γ_φ) and in nuclear matter (m^{*}_φ, Γ^{*}_φ) are determined self-consistently by

$$egin{array}{rcl} m_{\phi}^2 &=& (m_{\phi})^2 + \Re \Pi_{\phi}(m_{\phi}^2) \ \Pi_{\phi}(m_{\phi}) &=& -rac{1}{m_{\phi}} \Im \Pi(m_{\phi}^2) \end{array}$$

• At order g_{ϕ}^2 • $\Pi_{\phi}(p) = -\frac{1}{3} \Pi_{\phi}^{\mu\nu}(p).$

• $\Pi_{\phi}(p)$ acquires an imaginary part when $m_{\phi} > 2m_{K}$ ($m_{\phi} = 1020$ MeV, $m_{K} = 497$ MeV).

• The ϕ meson mass and decay width in vacuum $(m_{\phi}, \Gamma_{\phi})$ and in nuclear matter $(m_{\phi}^*, \Gamma_{\phi}^*)$ are determined self-consistently by

$$\begin{split} m_{\phi}^2 &= (m_{\phi})^2 + \Re \Pi_{\phi}(m_{\phi}^2) \\ \Gamma_{\phi}(m_{\phi}) &= -\frac{1}{m_{\phi}} \Im \Pi(m_{\phi}^2) \\ \bullet \text{ Essentially, in nuclear matter } m_{\phi} \to m_{\phi}^*, \ \Gamma_{\phi} \to \Gamma_{\phi}^*, \ m_K \to m_K^*. \end{split}$$

• At order g_{ϕ}^2 • $\Pi_{\phi}(p) = -\frac{1}{3} \Pi_{\phi}^{\mu\nu}(p).$

• $\Pi_{\phi}(p)$ acquires an imaginary part when $m_{\phi} > 2m_{K}$ ($m_{\phi} = 1020$ MeV, $m_{K} = 497$ MeV).

• The ϕ meson mass and decay width in vacuum $(m_{\phi}, \Gamma_{\phi})$ and in nuclear matter $(m_{\phi}^*, \Gamma_{\phi}^*)$ are determined self-consistently by

$$egin{array}{rcl} m_{\phi}^2 &=& (m_{\phi})^2 + \Re \Pi_{\phi}(m_{\phi}^2) \ \Pi_{\phi}(m_{\phi}) &=& -rac{1}{m_{\phi}} \Im \Pi(m_{\phi}^2) \end{array}$$

• Essentially, in nuclear matter $m_{\phi} \to \overset{\Psi}{m}^{*}_{\phi}$, $\Gamma_{\phi} \to \Gamma^{*}_{\phi}$, $m_{K} \to m^{*}_{K}$.

• m_K^* is computed in the quark meson coupling model (QMC).

• For a ϕ meson at rest, the scalar self-energy $\Pi_{\phi}(p)$ is given by

$${
m i}\Pi_{\phi}(p)=-rac{8}{3}g_{\phi}^{2}\intrac{d^{4}q}{(2\pi)^{2}}ec{q}^{2}D_{\mathcal{K}}(q)D_{\mathcal{K}}(q-p),$$

•
$$D_K(q) = \left(q^2 - m_K^2 + \mathrm{i}\epsilon
ight)^{-1}$$
 is the kaon propagator.

- *m_K* the kaon mass.
- The integral in $\Pi_{\phi}(p)$ divergent and needs regularization.
- We use a phenomenological form factor, with a cutoff parameter Λ_K:

$$u(ec{q}^2) = \left(rac{\Lambda_K + m_\phi^2}{ec{q}^2 + 4\omega_K^2(ec{q}^2)}
ight)^2, \ \omega_K(ec{q}^2) = \left(ec{q}^2 + m_K^2
ight)^{1/2}$$

• We study the dependence on $\Lambda_{\mathcal{K}}$.

The quark meson coupling model [PPNP 58, 1 (2007)]

- Crucial for our results in nuclear matter is the in-medium kaon mass. m_K^* is calculated in the QMC model.
- The QMC model is a quark-based, relativistic mean field model of nuclear matter and nuclei.
- Here the relativistically moving confined light quarks in the nucleon bags (MIT bag) self-consistently interact directly with the scalar-isoscalar σ , vector-isoscalar ω , and vector-isovector ρ mean fields (Hartree approximation) generated by the light quarks in the other nucleons.
- The meson mean fields are responsible for nuclear binding.
- The self-consistent response of the bound light quarks to the mean field σ field leads to novel saturation mechanism for nuclear matter.
- The model has opened tremendous opportunities for studies of the structure of finite nuclei and hadron properties in a nuclear medium (nuclei) with a model based on the underlying quarks dof.

The quark meson coupling model [PPNP 58, 1 (2007)]

• QMC results for the in-medium kaon mass m_{K}^{*} :

• The m_K^* at normal nuclear matter density $\rho_0 = 0.15 \text{ fm}^{-3}$ decreases by 13%.

Results: ϕ mass shift and decay width in nuclear matter

- Mass shift average of -24 MeV (2% decrease) at ρ_0 , with a 5 MeV spread.
- The mass shift depends on the value of Λ_K .

Results: ϕ mass shift and decay width in nuclear matter

- The ϕ decay width broadens by an order of magnitude at ρ_0 .
- This is important for the observability of bound states. (more later).

- A negative mass shift means that the nuclear mean field provides attraction to the vector meson.
- From a practical point of view, the important question is whether this attraction, if it exists, is sufficient to bind the ϕ to a nucleus.
- A simple argument: One knows that for an attractive spherical well of radius R and depth V_0 , the condition for the existence of a non relativistic s-wave bound state of a particle of mass m is

$$V_0 > \frac{\pi^2 \hbar^2}{8mR^2}$$

- Using $m = m_{\phi}^*(\rho_0)$ and R = 5 fm, one obtains V0 > 2 MeV.
- Therefore, the prospects of capturing a ϕ meson seem quite favorable, provided that the ϕ meson can be produced almost at rest in the nucleus.

- We now discuss the situation where the meson is "placed" in a nucleus.
- The nuclear density distributions for ¹²C, ¹⁶O, ⁴⁰Ca, ⁴⁸Ca, ⁹⁰Zr, ¹⁹⁷Au, and ²⁰⁸Pb are obtained using the QMC model (For ⁴He, we used PRC 56, 566 (1997)).
- Then, using a local density approximation we calculate the φ-meson complex potentials for a nucleus A, which can be written as (r is the distance from the center of the nucleus)

$$egin{array}{rcl} V_{\phi A}(r)&=&U_{\phi}(r)-(\mathrm{i}/2)W_{\phi}(r),\ U_{\phi}(r)&=&m_{\phi}(
ho_{B}(r))m_{\phi}\ W_{\phi}(r)&=&\Gamma_{\phi}(
ho_{B}(r)). \end{array}$$

- $U_{\phi}(r)$ is determined by the mass shift.
- $W_{\phi}(r)$ is determined by the decay width.
- $\rho_B(r)$ is the baryon density distribution for the particular nucleus (A).

• ϕ meson potentials: real part

U_φ(r) is deep enough to allow the formation of bound states.
U_φ(r) is sensitive to Λ_K.

• ϕ meson potentials: imaginary part

- $W_{\phi}(r)$ is repulsive.
- These observations may well have consequences for the feasibility of experimental observation of the expected bound states

Javier Cobos (Cátedra CONACyT, High Ener ϕ and J/Ψ mesons in cold nuclear matter

- In this study we consider the situation where the ϕ -meson is produced nearly at rest, $\vec{p} = 0$.
- Then, it should be a very good approximation to neglect the possible energy difference between the longitudinal and transverse components of the ϕ -meson wave function ψ^{μ}_{ϕ} .
- After imposing the Lorentz condition, $\partial_{\mu}\psi^{\mu}_{\phi} = 0$, to solve the Proca equation becomes equivalent to solving the Klein-Gordon equation

$$\left(-\nabla^2 + \mu^2 + 2\mu V(\vec{r})\right)\phi(\vec{r}) = \mathcal{E}^2\phi(\vec{r}),$$

where is the reduced mass of the system.

 The calculated bound state energies (E) and widths (Γ) are related to the complex energy eigenvalue ε by E = ℜε - μ and Γ = -2ℑε.

• $W_{\phi}(r) = 0$

		$\Lambda_K = 2000$	$\Lambda_K = 3000$	$\Lambda_K = 4000$
		E	E	E
${}^{4}_{\phi}$ He	1s	(-0.8)	(-1.4)	(-3.2)
$^{12}_{\phi}$ C	1s	(-4.2)	(-7.7)	(-10.7)
16 0	1s	(-5.9)	(-10.0)	(-13.4)
1	1p	(n)	(n)	(-1.5)
¹⁹⁷ Au	1s	(-15.0)	(-20.8)	(-25.2)
	1p	(-11.6)	(-17.2)	(-21.4)
	1d	(-7.5)	(-12.7)	(-16.7)
	2s	(-6.1)	(-11.0)	(-14.9)
	2p	(-1.3)	(-5.3)	(-8.8)
	2d	(n)	(n)	(-2.7)
²⁰⁸ Pb	1s	(-15.5)	(-21.4)	(-26.0)
,	1p	(-12.1)	(-17.8)	(-22.2)
	1d	(-8.1)	(-13.4)	(-17.6)
	2s	(-6.6)	(-11.7)	(-15.8)
	2p	(-1.9)	(-6.1)	(-9.8)
	2d	(n)	(-0.7)	(-3.7)

- The ϕ -meson is expected to form bound states with all nuclei, including ⁴He.
- However, *E* is dependent on Λ_K , increasing with Λ_K .

• $W_{\phi}(r) \neq 0$

		$\Lambda_{K} = 2000$		$\Lambda_K = 3000$		$\Lambda_K = 4000$	
		E	Γ/2	E	Γ/2	E	Γ/2
$^{4}_{\phi}$ He	1s	n (-0.8)	n	n (-1.4)	n	-1.0 (-3.2)	8.3
12 _{\$\phi} C	1s	-2.1 (-4.2)	10.6	-6.4 (-7.7)	11.1	-9.8 (-10.7)	11.2
¹⁶ ₀	1s	-4.0 (-5.9)	12.3	-8.9 (-10.0)	12.5	-12.6 (-13.4)	12.4
	1p	n (n)	n	n (n)	n	n (-1.5)	n
¹⁹⁷ Au	1s	-14.6 (-15.0)	16.9	-20.5 (-20.8)	16.1	-25.0 (-25.2)	15.5
	1p	-10.9 (-11.6)	16.2	-16.7 (-17.2)	15.5	-21.1 (-21.4)	15.0
	1d	-6.4 (-7.5)	15.2	-12.0 (-12.7)	14.8	-16.3 (-16.7)	14.4
	2s	-4.6 (-6.1)	14.6	-10.1 (-11.0)	14.3	-14.3 (-14.9)	14.0
	2p	n (-1.3)	n	-3.9 (-5.3)	13.0	-7.9 (-8.8)	12.9
	2d	n (n)	n	n (n)	n	-1.1 (-2.7)	11.4
²⁰⁸ Pb	1s	-15.0 (-15.5)	17.4	-21.1 (-21.4)	16.6	-25.8 (-26.0)	16.0
	1p	-11.4 (-12.1)	16.7	-17.4 (-17.8)	16.0	-21.9 (-22.2)	15.5
	1d	-6.9 (-8.1)	15.7	-12.7 (-13.4)	15.2	-17.1 (-17.6)	14.8
	2s	-5.2 (-6.6)	15.1	-10.9 (-11.7)	14.8	-15.2 (-15.8)	14.5
	2p	n (-1.9)	n	-4.8 (-6.1)	13.5	-8.9 (-9.8)	13.4
	2d	n (n)	n	n (-0.7)	n	-2.2 (-3.7)	11.9

- $W_{\phi}(r)$ is repulsive: some bound states disappear completely, even though they were found when $W_{\phi}(r) = 0$.
- Whether or not the bound states can be observed experimentally, is sensitive to the value of Λ_{K} .

- We have calculated the ϕ -mesonnucleus bound state energies and absorption widths for various nuclei.
- We expect that the φ-meson should form bound states for all nuclei selected studied, provided that the φ-meson is produced in (nearly) recoilless kinematics.
- Given the similarity of the binding energies and widths reported here, the signal for the formation of the ϕ -nucleus bound states may be challenging to identify experimentally.

 J/Ψ (" η_c - and J/Ψ -nuclear bound states"–In Preparation)

• A similar game can be played with the J/Ψ $(\phi
ightarrow J/\Psi, \ K
ightarrow D)$

• The effective Lagrangian to compute Π_{ψ} : (ψ denotes the J/Ψ)

$$\mathcal{L}_{\psi D\overline{D}} = \mathrm{i} g_{\psi} \psi^{\mu} \left[\overline{D} (\partial_{\mu} D) - (\partial_{\mu} \overline{D}) D \right],$$

- $g_{\psi} = 7.64$ is obtained from previous studies.
- From $\mathcal{L}_{\psi D\overline{D}}$ we compute Π_{ψ} and from there the mass shift for the J/Ψ in nuclear matter.

J/Ψ (" η_c - and J/Ψ -nuclear bound states" – In Preparation)

• The D meson mass is computed in the QMC model

- At ρ_0 , the QMC predicts a 62 MeV decrease for the D meson mass.
- This will induce a downward shift in the J/ mass, which means that the nuclear mean field provides attraction.

J/Ψ (" η_c - and J/Ψ -nuclear bound states" – In Preparation)

•
$$J/\Psi$$
 mass shift, $\Delta m_\psi = m_\psi^* - m_\psi^{\mathsf{vac}}$

- At ρ_0 , there is a mass shift ranging from -5 MeV to -20 MeV, depending on the value of Λ_D .
- This is enough for the formation of bound states.

J/Ψ (" η_{c} - and J/Ψ -nuclear bound states" – In Preparation)

 $\bullet~\phi$ meson potentials: real part

 The potentials are deep enough to allow the formation of bound states. J/Ψ (" η_c - and J/Ψ -nuclear bound states" – In Preparation)

• The potentials are deep enough to allow the formation of bound states.

		Bound state energies			
	nℓ	$\Lambda_D = 2000$	$\Lambda_D = 4000$	$\Lambda_D = 6000$	
$_{J/\Psi}^{4}$ He	1s	n	-0.70	-5.52	
$^{12}_{J/\Psi}C$	1s	-0.53	-4.47	-11.28	
¹⁶ _{J/Ψ} Ο	1s	-1.03	-5.73	-13.12	
¹⁹⁷ _{J/Ψ} Au	1s	-4.09	-10.49	-19.09	
,	1p	-2.98	-9.18	-17.64	
	1d	-1.66	-7.53	-15.80	
	2s	-1.23	-6.87	-15.00	
	1f	-0.20	-5.64	-13.66	
²⁰⁸ J/ΨPb	1s	-4.26	-10.84	-19.67	
- /	1p	-3.16	-9.53	-18.23	
	1d	-1.84	-7.91	-16.41	
	2s	-1.41	-7.26	-15.64	
	1f	-0.39	-6.04	-14.30	
	2p	-0.05	-5.11	-13.18	

- The bound states energies depend on the cutoff parameter Λ_D .
- For the all Λ_D but D = 2000 MeV we expect the formation of bound states with all nuclei.

Summary and Conclusions I

- We have calculated the ϕ and J/Ψ meson mass shift within an effective Lagrangian approach up to $\rho_B = 3\rho_0$.
- Essential to our results are m_K^* and m_D^* , both were calculated in the QMC model.
- A decrease in the masses of m_K^* and m_D^* induces a negative mass shift in the ϕ and J/Ψ mesons, respectively.
- A negative mass shift means that the nuclear mean field provides attraction.
- The vector-meson-nuclear potentials were calculated using a local density approximation, with the nuclear density distributions calculated in the QMC model.
- We have calculated the vector-mesonnucleus bound state energies (and absorption widths) for various nuclei.
- We expect that the vector-mesons studied should form bound states for all nuclei provided that the vector-meson is produced in (nearly) recoilless kinematics.