Doubly Heavy Baryons Expanded in $1/m_Q$

Takayuki Matsuki

Tokyo Kasei University

Nov. 16, 2018

2 Preparation

T. Matsuki (Tokyo Kasei University)

- Discovery of $\Xi_{cc}^{++}(3621)$ by LHCb in 2017
- Discovery of $\Xi_{cc}^+(3519)$ by SELEX in 2003
- quark contents: $\Xi(cc\{u, d\})$; I = 1/2 or $\Omega(ccs)$; I = 0 or
- $\Xi(bb\{u, d\}); I = 1/2 \text{ or } \Omega(bbs); I = 0$
- cc/bb: can be regarded as a diquark; Flavor symmetric, Color antisymmetric 3

Study the system

- $\bullet\,$ Study wave funcitons for λ and $\rho\,$ modes
- Discuss qualitatively narrow widths, mixing angles, and conserved quantities

T. Matsuki (Tokyo Kasei University)

Motivation: Qqq System

• Compare with the system

• ρ mode wave function becomes complicated

Motivation: Narrow heavy-light mesons

• Discovery of very narrow $D_s(2317, 2460)$ by BaBar & CLEO in 2003

prohibit $D_s(2317) \rightarrow D + K$ which leads to $D_s(2317) \rightarrow D + \pi$

 Heavy-light mesons expanded in 1/m_Q MPLA11 (1996) 257; PRD56 (1997) 5646; PTP (2007) 117, 1077
 BS formulation, PRD52 (1995) 5229 by Zeng et al.; PRD 64 (2001) 114004 by DiPierro Eichten

They are equivalent!

$$(H_0 + H_1 + \cdots)(\psi_0 + \psi_1 + \cdots) = (E_{-1} + E_0 + E_1 \cdots)(\psi_0 + \psi_1 + \cdots)$$

$$H_{-1} = m_Q \beta_Q, \quad E_{-1} = m_Q$$

$$H_0 = \vec{\alpha}_q \cdot \vec{p} + \beta_q m_q - \beta_q \beta_Q S + (1 + \vec{\alpha}_q \cdot \vec{\alpha}_Q) V$$

$$m_Q H_1 = -\frac{1}{2} \beta_Q \vec{p}^2 + \beta_q \vec{\alpha}_q \cdot (\vec{p} + \vec{q}/2) S + \frac{1}{2} \vec{\gamma}_Q \cdot \vec{q} V + \cdots$$

Motivation: Results of the former formulation

- Reproduce masses of $D_s(2317, 2460)$ below thresholds of $KD^{(*)}$ according to the expansion in $1/m_Q$ (Kinematical, not dynamical like coupled channel)
- D_s mass spectra: PTP117 (2007) 1077

$^{2s+1}L_J(J^P)$	M_0	c_{1}/M_{0}		$M_{\rm calc}$	$M_{\rm obs}$	$\chi^2/d.o.f$
		p_1/M_0	n_1/M_0			
${}^{1}S_{0}(0^{-})$	1900	0.352×10^{-1}		1967	$1969{\pm}0.5^{39)}$	1.60
		0.270×10^{-1}	0.816×10^{-2}			
${}^{3}S_{1}(1^{-})$		1.102×10^{-1}		2110	$2112 \pm 0.6^{39)}$	1.11
		1.098×10^{-1}	4.076×10^{-4}			
${}^{3}P_{0}(0^{+})$	2095	1.101×10^{-1}		2325	2317 ± 0.6^{39}	17.78
		1.027×10^{-1}	0.740×10^{-2}			
${}^{"3}P_1"(1^+)$		1.779×10^{-1}		2467	2460 ± 0.9^{39}	6.05
. ,		1.752×10^{-1}	2.620×10^{-3}			

This happened because we select potentials not appearing as ordinary LS and SS couplings

Motivation: Mixing angles in heavy quark limit

• Predict mixing angles in HQS limit, e.g., $\tan^{-1}\theta=1/\sqrt{2}$ between 1P_1 and 3P_1

$$\begin{pmatrix} j^{P} = 1^{+}, j_{l} = 1/2 \\ j^{P} = 1^{+}, j_{l} = 3/2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \begin{vmatrix} ^{3}P_{1} \\ & 1P_{1} \end{pmatrix}$$

In general,

$$\begin{pmatrix} L^P = 1^+, j_l = L - 1/2 \\ L^P = 1^+, j_l = L + 1/2 \end{pmatrix} = \frac{1}{\sqrt{2L+1}} \begin{pmatrix} \sqrt{L+1} & -\sqrt{L} \\ \sqrt{L} & \sqrt{L+1} \end{pmatrix} \begin{pmatrix} \begin{vmatrix} ^3L_L \\ ^1L_L \end{pmatrix} \\ P = (-)^{L+1} \end{pmatrix}$$

To begin with, we need to introduce FWT transformation to expand the system in $1/m_Q$, which has an important property

• FWT transformation leads to expansion in $1/m_Q$

$$U_{FWT}(ec{p}) \equiv \exp\left(Wec{\gamma}\cdotec{n}
ight), \quad ec{n} = rac{ec{p}}{p}, \quad ext{tan } W = rac{p}{m_Q+E}$$

To begin with, we need to introduce FWT transformation to expand the system in $1/m_Q$, which has an important property

• FWT transformation leads to expansion in $1/m_Q$

$$U_{FWT}(\vec{p}) \equiv \exp\left(W\vec{\gamma}\cdot\vec{n}
ight), \quad \vec{n} = rac{\vec{p}}{p}, \quad ext{tan } W = rac{p}{m_Q + E}$$

• This operates only on heavy quarks, which makes kinetic terms to free energy

$$U_{FWT} \left(\vec{p} \cdot \vec{\alpha} + m_Q \beta \right) U_{FWT}^{-1} = E\beta$$

To describe QQq system, it is very convinient to use Jacobi coordinates

$$\vec{\rho} = \frac{1}{\sqrt{2}} (\vec{r_1} - \vec{r_2}),$$

$$\vec{\lambda} = \frac{1}{\sqrt{6}} (\vec{r_1} + \vec{r_2} - 2\vec{r_3}) = \frac{1}{\sqrt{6}} \{ (\vec{r_1} - \vec{r_3}) + (\vec{r_2} - \vec{r_3}) \}$$

Scenario how to obtain λ and ρ mode wave functions and eigenvalues is as follows.

- Set up Hamiltonian $H = H_{kin} + H_{int}$
- **2** Prepare FWT transformation on two heavy quarks
- Solution 5 Sector H in terms of $1/m_Q$ using FWT transformation
- Change the coordinates to Jacobi ones
- **(5)** Derive lowest order λ and ρ wave functions
- Try to solve them
- (Try to numerically solve them togehter with eigenvalues)

• Kinetic terms

$$H_{kin} = \vec{p}_1 \cdot \vec{\alpha}_1 + m_Q \beta_1 + \vec{p}_2 \cdot \vec{\alpha}_1 + m_Q \beta_2 + \vec{p}_3 \cdot \vec{\alpha}_3 + m_q \beta_3$$

• Kinetic terms

$$H_{kin} = \vec{p}_1 \cdot \vec{\alpha}_1 + m_Q \beta_1 + \vec{p}_2 \cdot \vec{\alpha}_1 + m_Q \beta_2 + \vec{p}_3 \cdot \vec{\alpha}_3 + m_q \beta_3$$

Interation terms

$$H_{int} = V_{13} + V_{23} + V_{12} + \beta_1 \beta_3 S_{13} + \beta_2 \beta_3 S_{23} + \beta_1 \beta_2 S_{12},$$

with

$$V_{ij} = (1 - \vec{\alpha}_i \cdot \vec{\alpha}_j) V(r_{ij}), \quad V(r_{ij}) = -\frac{2\alpha_s}{3} \frac{1}{r_{ij}}, \quad S_{ij} = \frac{r_{ij}}{a^2} + b,$$

Formulation: FWT transformation on QQ & expansion

$$\begin{split} H_{-1} &= (\beta_1 + \beta_2) \, m_Q, \\ H_0 &= \vec{p}_3 \cdot \vec{\alpha}_3 + \beta_3 m_q + \beta_1 \beta_2 S_{12}(r_{12}) + \beta_1 \beta_3 S_{13}(r_{13}) \\ &+ \beta_2 \beta_3 S_{23}(r_{23}) + V(r_{12}) + V(r_{13}) + V(r_{23}), \\ 2m_Q H_1 &= (\beta_1 p_1^2 + \beta_2 p_2^2) + (\vec{q}_1 \cdot \vec{\gamma}_1 + \vec{q}_2 \cdot \vec{\gamma}_2) (\vec{p}_3 \cdot \vec{\alpha}_3 + m_Q \beta_3) \\ &- [\beta_2 (2\vec{p}_1 + \vec{q}_1) \cdot \vec{\alpha}_1 + \beta_1 (2\vec{p}_2 + \vec{q}_2) \cdot \vec{\alpha}_2] \, S_{12}(r_{12}) \\ &- \beta_3 (2\vec{p}_1 + \vec{q}_1) \cdot \vec{\alpha}_1 \, S_{13}(r_{13}) - \beta_3 (2\vec{p}_2 + \vec{q}_2) \cdot \vec{\alpha}_2 \, S_{23}(r_{23}) \\ &- \left[\beta_1 \vec{\alpha}_2 \cdot (2\vec{p}_1 + \vec{q}_1) + \beta_2 \vec{\alpha}_1 \cdot (2\vec{p}_2 + \vec{q}_2) + i\vec{\alpha}_1 \cdot \beta_2 \, \vec{q}_2 \times \vec{\Sigma}_2 \right] \\ &+ i \, \vec{\alpha}_2 \cdot \beta_1 \, \vec{q}_1 \times \vec{\Sigma}_1 \Big] \, V(r_{12}) \\ &- \left[\beta_1 \vec{\alpha}_3 \cdot (2\vec{p}_1 + \vec{q}_1) + i\vec{\alpha}_3 \cdot \beta_1 \, \vec{q}_1 \times \vec{\Sigma}_1 \right] \, V(r_{13}) \\ &- \left[\beta_2 \vec{\alpha}_3 \cdot (2\vec{p}_2 + \vec{q}_2) + i\vec{\alpha}_3 \cdot \beta_2 \, \vec{q}_2 \times \vec{\Sigma}_2 \right] \, V(r_{23}), \end{split}$$

Lowest order λ mode Schrödinger equation:

$$\left[-\vec{p}_{\lambda'}\cdot\vec{\alpha}_3+m_q\beta_3+2V(\lambda')+2\beta_3S(\lambda')\right]\psi_0=E_0\psi_0$$

where $\lambda' = \lambda/\sqrt{6}$, $2V = -4\alpha_s/(3r)$, and $2S = 2r/a^2 + 2b$. Twice of confining potential and the same one-gluon exchange potential as $\overline{3}$

That is, there are two color sources for confining potential, 2*S*, but $3 \times 3 = 6 + \overline{3}$ for one-gluon exchange potential, 2*V*

Lowest order ρ mode Schrödinger equation must be antisymmetric in flavor, color, spin, and orbital angular momentum as shown in the figure

$$(s_{
ho} = 0, L_{
ho} = 1), \text{ or } (s_{
ho} = 1, L_{
ho} = 0)$$

That is, for a diquark, either ${}^{3}S_{1}$ or ${}^{1}P_{1}$. So the ground state of QQq is given by

$$2^{2s_{\rho}+1}L_{\rho j_{\rho}}^{2s_{\lambda}+1}L_{\lambda j_{\lambda}} = {}^{3}S_{1} {}^{1}S_{1/2}, \ J^{P} = 1/2^{+}, 3/2^{+} \ (P = (-)^{L_{\rho}+L_{\lambda}})$$

Lowest order ρ mode Schrödinger equation must satisfy

$$H_{\rho}\psi_{\rho} = E_{\rho}\psi_{\rho}, \quad H_{\rho} = \frac{\vec{p}_{\rho}^{2}}{2m_{Q}} + S\left(\sqrt{2}\rho\right) + V\left(\sqrt{2}\rho\right)$$

This is one component of $\psi_{\rho}.$ There are other components. Total energy of doubly heavy baryon is given by

$$E_{tot} = E_0 + E_
ho + \left\langle rac{p_\lambda^2}{2m_Q}
ight
angle$$

Results: Solution to λ mode wave function

$$\begin{split} y_{jm}^{k}(\Omega) &= \frac{1}{\sqrt{2(j+1)}} \begin{pmatrix} \sqrt{j+1-m} \ Y_{j+1/2}^{m-1/2} \\ -\sqrt{j+1+m} \ Y_{j+1/2}^{m+1/2} \end{pmatrix}, \\ y_{jm}^{-k}(\Omega) &= \frac{1}{\sqrt{2j}} \begin{pmatrix} \sqrt{j+1-m} \ Y_{j+1/2}^{m-1/2} \\ -\sqrt{j+1+m} \ Y_{j+1/2}^{m+1/2} \end{pmatrix} = (\vec{\sigma} \cdot \vec{n}) \ y_{jm}^{k}(\Omega), \end{split}$$

with Y_j^m spherical hamonics and $k = j_{\lambda} + 1/2$. A general solution is

$$\begin{split} \psi_{jm}^{(\lambda)k} &= \frac{1}{r} \begin{pmatrix} u_k(r) \\ -iv_k(r) \left(\vec{\sigma} \cdot \vec{n}\right) \end{pmatrix} y_{jm}^k(\Omega), \\ \begin{pmatrix} m_q + 2S + 2V & -\partial_r + \frac{k}{r} \\ \partial_r + \frac{k}{r} & -m_q - 2S + 2V \end{pmatrix} \begin{pmatrix} u_k(r) \\ v_k(r) \end{pmatrix} = E_0^k \begin{pmatrix} u_k(r) \\ v_k(r) \end{pmatrix} \end{split}$$

We find the quantum number similar to one for heavy-light mesons

$$\begin{split} & \mathcal{K} &= -\beta_q \left(\vec{\Sigma}_q \cdot \vec{L}_\lambda + 1 \right), \quad \mathcal{K} \psi_\ell = k \psi_\ell, \\ & k &= \pm \left(j_\lambda + \frac{1}{2} \right), \end{split}$$

where k appears in Schrödinger eq. for λ mode wf.

• $1/m_Q$ expansion works well for doubly heavy baryon systems

• $1/m_Q$ expansion works well for doubly heavy baryon systems • solutions to λ mode wave functions are obtained

$$\psi_{jm}^{(\lambda)k} = \frac{1}{r} \begin{pmatrix} u_k(r) \\ -iv_k(r)(\vec{\sigma} \cdot \vec{n}) \end{pmatrix} y_{jm}^k(\Omega),$$

$$\begin{pmatrix} m_q + 2S + 2V & -\partial_r + \frac{k}{r} \\ \partial_r + \frac{k}{r} & -m_q - 2S + 2V \end{pmatrix} \begin{pmatrix} u_k(r) \\ v_k(r) \end{pmatrix} = E_0^k \begin{pmatrix} u_k(r) \\ v_k(r) \end{pmatrix}$$

We expect that ρ mode excitation energies are smaller than λ mode ones, E_ρ < E_λ So the first excitation is n_ρL_ρn_λL_λ = 1P1S which is next of 1S1S. E(1P1S) < E(1S1P). Below is taken from Qi-Fang Lü et al. PRD96 (2017) 114006.

PHYSICAL REVIEW D 96, 114006 (2017)

$(N_d L_d n_q l_q) J^P$	Ξ_{cc}	Ω_{cc}	Ξ_{bb}	Ω_{bb}
$(1S1s)1/2^+$	3606	3715	10 138	10 2 30
$(1S1s)3/2^+$	3675	3772	10 169	10 258
$(1S1p)1/2^{-}s_{T}=1/2$	3998	4087	10 525	10 605
$(1S1p)3/2^{-}s_{\tau=1/2}$	4014	4107	10 526	10 6 10
$(1S1p)1/2^{-}_{S_{\tau}=3/2}$	3985	4081	10 504	10 591
$(1S1p)3/2^{-}_{S_{T}=3/2}$	4025	4114	10 528	10611
$(1S1p)5/2^{-1}$	4050	4134	10 547	10 625
$(1S2s)1/2^+$	4172	4270	10 662	10751
$(1S2s)3/2^+$	4193	4288	10 675	10 763
$(1P1s)1/2^{-}$	3873	3986	10 364	10 464
$(1P1s)3/2^{-}$	3916	4020	10 387	10 482

TABLE III. Predicted mass spectra of Ξ_{cc} , Ω_{cc} , Ξ_{bb} , and Ω_{bb} . The units are in MeV.

• Narrow decay widths are expected for the following processes, when $M(\Omega_{cc}) < M(\Xi_{cc}) + M(K)$ For exmaple, in this case, the process $\Omega_{cc} \rightarrow \Xi_{cc} + K$ is prohibited. Hence the strong decay width of Ω_{cc} becomes very narrow. There is only one channel allowed, $\Omega_{cc} \rightarrow \Xi_{cc} + \pi$ through 10^{-2} times suppresed due to $\eta - \pi^0$ mixing. Both Ω_{cc} and Ξ_{cc} have the same J but have the opposite P.

$(N_d L_d n_q l_q) J^P$	Ξ_{cc}	Ω_{cc}	Ξ_{bb}	Ω_{bb}
$(1S1s)1/2^+$	3606	3715	10 138	10 2 30
$(1S1s)3/2^+$	3675	3772	10 169	10 258
$(1S1p)1/2^{-}s_{r=1/2}$	3998	4087	10 525	10 605
$(1S1p)3/2^{-}s_{p-1/2}$	4014	4107	10 526	10610

Mixing angles:

• Heavy quark symmetric mixing occurs for heavy-light mesons between ${}^{1}P_{1}$ and ${}^{3}P_{1}$. This is not the case for doubly heavy baryons because there so many states with the same J^{P} .

$(N_d L_d n_q l_q) J^P$	Ξ_{cc}	Ω_{cc}	Ξ_{bb}	Ω_{bb}
$(1S1s)1/2^+$	3606	3715	10 138	10 2 30
$(1S1s)3/2^+$	3675	3772	10 169	10 258
$(1S1p)1/2^{-}_{S_{T}=1/2}$	3998	4087	10 525	10 605
$(1S1p)3/2_{S_{\tau}=1/2}^{-1/2}$	4014	4107	10 526	10610
$(1S1p)1/2^{-}_{S_{T}=3/2}$	3985	4081	10 504	10 591
$(1S1p)3/2_{S_{\tau}=3/2}^{-1}$	4025	4114	10 528	10611
$(1S1p)5/2^{-1}$	4050	4134	10 547	10 625
$(1S2s)1/2^+$	4172	4270	10 662	10751
$(1S2s)3/2^+$	4193	4288	10 675	10 763
$(1P1s)1/2^{-}$	3873	3986	10364	10 464
$(1P1s)3/2^{-}$	3916	4020	10 387	10 482
$(2S1s)1/2^+$	4004	4118	10464	10 566

Thanks for your attention!

Belle II