Zc states in a Chiral Quark Model

8th International Conference on Quarks and Nuclear Physics (QNP2018)

P.G. Ortega, J. Segovia, <u>D.R. Entem</u> and F. Fernández

Introduction

- From the November revolution in 1974 up to the discovery of the X(3872) in 2003 all the heavy mesons were well accommodated in the naive quark model
- For the X(3872) the ratio $\frac{\Gamma(\omega J/\psi)}{\Gamma(\pi^+\pi^- J/\psi)} = 0.8 \pm 0.3$ is difficult to understand as a pure $c\bar{c}$ state
- The ratio can be easily explained in the molecular picture due to the mass difference between the charged and neutral D and D* mesons.
- The Ds0(2317) and Ds1(2460) are predicted by most quark models at energies aroung 2.5 GeV
- In 2011 the charged Zb(10610) and Zb(10650) mesons were discovered which are evidences of non naive quark model states
- Later in 2013 the analogs in the charmonium sector were found

Zc(3900) state

Belle, Phys. Rev. Lett. 110, 252002 **BESIII**, Phys. Rev. Lett. 110, 252001 70 E 🗕 Data 100 🔶 data — Total fit 60 Events / 0.01 GeV/c² Events / 0.02 GeV/c² ---- Background fit 80 Background PHSP MC 50 - PHSP MC Sideband 60 30 40 20 20 3.9 3.7 3.8 4.0 3.8 3.9 3.7 4.1 4.2 $M_{\rm max}(\pi^{\pm}J/\psi)$ (GeV/c²) $M_{\rm max}(\pi J/\psi)$ (GeV/c²) $M = (3894.5 \pm 6.6 \pm 4.5) \text{ MeV/c}^2$ $M = (3899.0 \pm 3.6) \text{ MeV/c}^2$ $\Gamma = (63 \pm 24 \pm 26) \text{ MeV}$ $\Gamma = (46 \pm 10) \text{ MeV}$ $\sqrt{s} = 4.26 \text{ GeV } Y(4260)$

Zc(3900) state

$e^+e^- \to \pi^+\pi^- J/\psi$

Analysis of CLEO-c data, Phys. Lett. B727, 366 (2013)

Zc(3900)/Zc(3885) state

- Confirmed by BESIII in $e^+e^- \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$ compatible with $J^P = 1^+$
- It was labelled as $Z_c(3885) M = (3883.9 \pm 1.5 \pm 4.2) \text{ MeV}/c^2$

• BESIII, Phys. Rev. Lett. 119, 072001 (2017) determined $J^P = 1^+$ for the $Z_c(3900)~M = (3881.2 \pm 4.2 \pm 52.7)~{\rm MeV}/c^2$

 $\Gamma = (51.8 \pm 4.6 \pm 36.0) \text{ MeV}$

• They are seen as the same state

Zc(4020) state

$$e^+e^- \rightarrow \pi^+\pi^- h_c$$

BESIII, Phys. Rev. Lett. 111, 242001

$$e^+e^- \to (D^*\bar{D}^*)^\pm \pi^\mp$$

BESIII, Phys. Rev. Lett. 112, 132001

 $M = (4026.3 \pm 2.6 \pm 3.7) \text{ MeV/c}^2$

$$\Gamma = (24.8 \pm 5.6 \pm 7.7) \text{ MeV}$$

 $\sqrt{s} = 4.26 \text{ GeV}$

Zc(4020) state

$$e^+e^- \to \pi^0\pi^0h_c$$

BESIII, Phys. Rev. Lett. 113, 212002

Neutral state confirmed

 $M = (4023.9 \pm 2.2 \pm 2.8) \text{ MeV/c}^{\circ}$ $\Gamma = (7.9 \pm 2.6) \text{ MeV} \text{ (fixed)}$ $\sqrt{s} = 4.23, 4.26, 4.36 \text{ GeV}$

- Since the states are charged they can not be pure quark-antiquark states
- More complex structures are needed
- The closest thresholds are $D\bar{D}^*$ and $D^*\bar{D}^*$
- They could be
 - Hadron molecules

F.-K. Guo, C. Hidalgo-Duque, J. Nieves, and M. P. Valderrama, Phys. Rev. D88, 054007 (2013), arXiv:1303.6608 [hep-ph].
J. He, X. Liu, Z.-F. Sun, and S.-L. Zhu, Eur. Phys. J. C73, 2635 (2013), arXiv:1308.2999 [hep-ph].
X.-H. Liu, L. Ma, L.-P. Sun, X. Liu, and S.-L. Zhu, Phys. Rev. D90, 074020 (2014), arXiv:1407.3684 [hep-ph].

- Since the states are charged they can not be pure quark-antiquark states
- More complex structures are needed
- The closest thresholds are $D\bar{D}^*$ and $D^*\bar{D}^*$
- They could be
 - Hadron molecules
 - Tetraquarks

A. Esposito, A. L. Guerrieri, F. Piccinini, A. Pilloni, and
A. D. Polosa, Int. J. Mod. Phys. A30, 1530002 (2015), arXiv:1411.5997 [hep-ph].
J. M. Dias, F. S. Navarra, M. Nielsen, and C. M. Zanetti, Phys. Rev. D88, 016004 (2013), arXiv:1304.6433 [hepph].
S. S. Agaev, K. Azizi, and H. Sundu, Phys. Rev. D96, 034026 (2017), arXiv:1706.01216 [hep-ph].
Z.-G. Wang and T. Huang, Phys. Rev. D89, 054019 (2014), arXiv:1310.2422 [hep-ph].
C.-F. Qiao and L. Tang, Eur. Phys. J. C74, 3122 (2014), arXiv:1307.6654 [hep-ph].
C. Deng, J. Ping, and F. Wang, Phys. Rev. D90, 054009 (2014), arXiv:1402.0777 [hep-ph].

- Since the states are charged they can not be pure quark-antiquark states
- More complex structures are needed
- The closest thresholds are $D\bar{D}^*$ and $D^*\bar{D}^*$
- They could be
 - Hadron molecules
 - Tetraquarks
 - Threshold effects

E. S. Swanson, Phys. Rev. D91, 034009 (2015), arXiv:1409.3291 [hep-ph].
E. S. Swanson, Int. J. Mod. Phys. E25, 1642010 (2016), arXiv:1504.07952 [hep-ph].

- Since the states are charged they can not be pure quark-antiquark states
- More complex structures are needed

1 1 1

• The closest thresholds are $D\bar{D}^*$ and $D^*\bar{D}^*$

They could be	S. Prelovsek, C. B. Lang, L. Leskovec, and D. Mohler,
Hadron molecules	Phys. Rev. D91 , 014504 (2015), arXiv:1405.7623 [hep-
Tetraquarks	S. Prelovsek and L. Leskovec, Phys. Lett. B727 , 172
 Threshold effects 	(2013), arXiv:1308.2097 [hep-lat].
LQCD studies	arXiv:1403.1318 [hep-lat].
	Y. Chen <i>et al.</i> (CLQCD), Phys. Rev. D92 , 054507 (2015), arXiv:1503.02371 [hep-lat].
	Sh. Lee, C. DeTar, H. Na, and D. Mohler (Fermilab Lattice, MILC), (2014), arXiv:1411.1389 [hep-lat].
	Y. Ikeda, S. Aoki, T. Doi, S. Gongyo, T. Hatsuda,
	T. Inoue, T. Iritani, N. Ishii, K. Murano, and K. Sasaki (HAL QCD), Phys. Rev. Lett. 117 , 242001 (2016).
	arXiv:1602.03465 [hep-lat].

MPUS DE EXCELENCIA INTERNACIONA

Works on Effective Field Theories

- F.-K. Guo et al. (Phys. Rev. D 91, 051504) showed the pronounced peak needs a virtual or molecular state
- F. Aceti et al. (Phys. Rev. D 90, 016003) found a I=1 barely DD̄* bound state with a mass around 3869-3875 MeV
- M. Albaladejo et al. (Phys. Lett. B755, 337) found more likely to be a threshold nearby resonance or virtual state and a bound state was disfavored
- J. He at al. (Eur. Phys. J. C 78, 94) found a virtual state

Works on Lattice QCD

- S. Prelovsek et al. (Phys. Rev. D91, 014504) does not found a candidate
- Y. Chen et al. (Phys. Rev. D89, 094506) does not support a shallow bound state
- Y. Ikeda et al. (Phys. Rev. Lett. 117, 242001) found that the interaction is dominated by off-diagonal terms supporting a threshold cusp

Line shapes

$$A + B = \{ \pi J/\psi, \, \rho \eta_c, \, D\bar{D}^*, \, D^*\bar{D}^* \}$$

Mass distribution
$$d\Gamma = \frac{1}{(2\pi)^3} \frac{k_{AB} k_{\pi Z_c}}{4s} |\mathcal{M}^{\beta}(m_{AB})|^2 dm_{AB}$$
Production amplitude
only in S-waves $\mathcal{M}^{\beta}(m_{AB}) = \left(\mathcal{A}^{\beta} - \sum_{\beta'} \mathcal{A}^{\beta'} \int d^3p \frac{t^{\beta'\beta}(p,k^{\beta},E)}{p^2/2\mu - E - i0}\right)$ Number of events $N(m_{AB}) = \mathcal{N}_{AB} \times \frac{d\Gamma}{dm_{AB}}$

The Chiral Quark model

 K^0

 K^{-}

 π

 K^+

 \bar{K}^+

 π^0

- Spontaneous Chiral Symmetry Breaking Pseudo-goldstone boson exchange
- One gluon exchange
- Confinement

$$V_{q_iq_j} = \begin{cases} q_iq_j = nn \Rightarrow V_{CON} + V_{OGE} + V_{GBE} + V_{SBE} \\ q_iq_j = nQ \Rightarrow V_{CON} + V_{OGE} \\ q_iq_j = QQ \Rightarrow V_{CON} + V_{OGE} \end{cases}$$

A. Manohar and H. Georgi, Nucl. Phys. B 324 (1984) F. Fernández et al., J. Phys. G 19 (1993)

Two meson dynamics

Direct terms:

- No change of quark content
- Cancel for color interactions

 $D^{(*)}\bar{D}^* \to D^{(*)}\bar{D}^*$ No contribution for $\pi J/\psi \to \pi J/\psi$

Rearrangement process:

- Change quark content
- Color interactions contribute

 $D^{(*)}\bar{D}^* \rightarrow \pi J/\psi$ Non-diagonal terms

Results

 $I^G(J^{PC}) = 1^+(1^{+-})$

We include the closest thresholds and the $\pi J/\psi$

 $\pi J/\psi$ (3234.19 MeV/ c^2)

 $\rho \eta_c \ (3755.79 \ {\rm MeV}/c^2)$

 $D\bar{D}^*$ (3875.85 MeV/ c^2)

 $D^* \bar{D}^*$ (4017.24 MeV/ c^2)

We do a χ^2 fit to the data	Channel	$\mathcal{N}_{AB}(\times 10^7)$	\mathcal{A}_{AB}
$\chi^2(\{\mathcal{A}, \mathcal{N}\}) = \sum \left(\frac{N^{\text{the}}(x_i) - N^{\exp}(x_i)}{\exp}\right)^2$	$\pi J/\psi$	3.76 ± 0.09	0.34 ± 0.01
	$Dar{D}^*$	0.80 ± 0.04	0.76 ± 0.01
	$D^* ar D^*$	19.33 ± 0.7	0.66 ± 0.01
$\frac{1}{i}$ (σ_i)	$ ho\eta_c(1S)$		-1.00 ± 0.04
	$\chi^2_{\rm min}/{ m d.o.f.}$	1.	.89

Lineshapes for $\pi J/\psi$

Data from **BESIII** Phys. Rev. Lett. 119, 072001 (2017)

Lineshapes for DD*

 $\sqrt{s} = 4.26 \text{ GeV}$

$$e^+e^- \to \pi^{\pm} (D\bar{D}^*)^{\mp}$$

Lineshapes for D*D*

 $\sqrt{s} = 4.26 \text{ GeV}$

Virtual states

Calculation	$Z_c(3900)$ pole	RS	$Z_c(4020)$ pole	RS
$D\bar{D}^*$	3871.37 - 2.17i	(S)	-	-
$D\bar{D}^* + D^*\bar{D}^*$	3872.27 - 1.85i	(S,F)	4014.16 - 0.10i	(S,S)
$ ho\eta_c + Dar{D}^*$	3871.32 - 0.00i	(S,S)	-	-
$ ho\eta_c + D\bar{D}^* + D^*\bar{D}^*$	3872.07 - 0.00i	(S,S,F)	4013.10 - 0.00i	(S,S,S)
$\pi J/\psi + \rho \eta_c + D\bar{D}^* + D^*\bar{D}^*$	3871.74 - 0.00i	(S,S,S,F)	4013.21 - 0.00i	(S,S,S,S)

Lineshapes for DD*

Virtual states

Calculation	$Z_c(3900)$	type
This work	3871.74	virtual
F. Aceti et al.	3878 - 23 i	resonance
M. Albaladejo et al.	$3894 \pm 6 \pm 1 - 30 \pm 12 \pm 6 i$	resonance
	$3886 \pm 4 \pm 1 - 22 \pm 6 \pm 4i$	resonance
	$3831 \pm 26^{+7}_{-28}$	virtual
	$3844 \pm 19^{+12}_{-21}$	virtual
Y. Ikeda et al.	$3709 \pm 94 - 183(46) i$	virtual
	$3748 \pm 76 - 157(32) i$	virtual
	$3686 \pm 56 - 44(27) i$	virtual
J. He et al.	3876 - 5 i	resonance
Calculation	$Z_c(4020)$	type
This work	4013.21	virtual
F. Aceti et al.	(3990 - 4000) - 50 i	bound/virtual

Summary

We have analyzed the invariant mass distributions for the reactions

$$\begin{split} e^+e^- &\to \pi^+\pi^- J/\psi \\ e^+e^- &\to (D\bar{D}^*)^\pm\pi^\mp \\ e^+e^- &\to (D^*\bar{D}^*)^\pm\pi^\mp \end{split}$$

- We fit the data with a $\chi^2/d.o.f=1.89$
- The production amplitude is assumed to be a phenomenological vertex that produce a pion and other two mesons
- We use the Chiral Quark Model for the final state interaction
- We obtain two virtual states close to the $D\overline{D}^*$ and $D^*\overline{D}^*$ thresholds for the Zc(3900)/Zc(3885) and Zc(4020) with quantum numbers

$$I^G(J^{PC}) = 1^+(1^{+-})$$