Fully coupled-channel study of K⁻pp resonance

KEK Theory Center Akinobu Doté

- 1. Introduction
- 2. Formalism
 - Fully coupled-channel Complex Scaling Method for "K-pp"
 - Self-consistency for energy-dependent potential in coupled-channel case
- 3. Result
- 4. Relativistic effect

Collaborators:

- Takashi Inoue (Nihon university)
- Takayuki Myo (Osaka Institute of Technology)
- Summary and future prospects

The 8th International Conference on Quarks and Nuclear Physics (QNP2018) November 14, 2018 @ Tsukuba International Congress Center, Tsukuba, Ibaraki, Japan

K^2 pp = the prototype of kaonic nuclei <u>... bridge from $\Lambda(1405)$ to general kaonic nuclei</u>

Kaonic nuclei = Nuclear many-body system with antikaons

Doorway to dense matter? → Chiral symmetry restoration in dense matter??

According to many theoretical studies of "K-pp" ...

<u>"К-рр" (Ј^π=0-, Т=1/2)</u>

- Doté, Hyodo, Weise, PRC79, 014003(2009).
- Akaishi, Yamazaki, PRC76, 045201(2007)
- Ikeda, Sato, PRC76, 035203(2007).
- Shevchenko, Gal, Mares, PRC76, 044004(2007)
- Barnea, Gal, Liverts, PLB712, 132(2012)

→ Summarized in A. Gal, E. V. Hungerford, D. J. Millener, Rev. Mod. Phys. 88, 035004 (2016).

Resonant state of K^{bar}NN-πΣN-πΛN coupled channel three-body system

Resonance & Channel coupling

⇒ <u>"Fully coupled-channel</u>

Complex Scaling Method"

A. Dote, T. Inoue, T. Myo, PRC 95, 062201(R) (2017)

<u>2. Formalism</u>

• Fully coupled-channel Complex Scaling Method for "K-pp"

• Self-consistency for energy-dependent potential in coupled-channel case

"K-pp" $K^{bar}NN - \pi \Sigma N - \pi \Lambda (J^{\pi} = 0^{-}, T = 1/2)$

Wave function ... Treat all channels explicitly!

$$\begin{split} |"K^{-}pp"\rangle &= \sum_{a} C_{a}^{(K\{NN\}^{+})} G_{a}^{(K\{NN\}^{+})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{NN} = 0\rangle \left[\left[K[NN]_{1} \right]_{T=1/2, Tz=1/2} \right\rangle \\ &+ \sum_{a} C_{a}^{(K\{NN\}^{-})} G_{a}^{(K\{NN\}^{-})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{NN} = 0\rangle \left[\left[K[NN]_{0} \right]_{T=1/2, Tz=1/2} \right\rangle \right] \\ &+ \sum_{a} C_{a}^{(\pi\{\Sigma N\}^{+})} G_{a}^{(\pi\{\Sigma N\}^{+})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{\Sigma N} = 0\rangle \left[\left[\pi\Sigma \right]_{0} N \right]_{T=1/2, Tz=1/2}, \{\Sigma N\}_{S} \right\rangle \\ &+ \sum_{a} C_{a}^{(\pi\{\Sigma N\}^{-})} G_{a}^{(\pi\{\Sigma N\}^{-})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{\Sigma N} = 0\rangle \left[\left[\pi\Sigma \right]_{0} N \right]_{T=1/2, Tz=1/2}, \{\Sigma N\}_{A} \right\rangle \\ &+ \sum_{a} C_{a}^{(\pi\{\Sigma N\}^{+})} G_{a}^{(\pi\{\Sigma N\}^{+})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{\Sigma N} = 0\rangle \left[\left[\pi\Sigma \right]_{1} N \right]_{T=1/2, Tz=1/2}, \{\Sigma N\}_{S} \right\rangle \\ &+ \sum_{a} C_{a}^{(\pi\{\Sigma N\}^{+})} G_{a}^{(\pi\{\Sigma N\}^{-})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{\Sigma N} = 0\rangle \left[\left[\pi\Sigma \right]_{1} N \right]_{T=1/2, Tz=1/2}, \{\Sigma N\}_{A} \right\rangle \\ &+ \sum_{a} C_{a}^{(\pi\{\Sigma N\}^{+})} G_{a}^{(\pi\{\Sigma N\}^{+})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{\Delta N} = 0\rangle \left[\left[\pi\Delta \right]_{1} N \right]_{T=1/2, Tz=1/2}, \{\Lambda N\}_{S} \right\rangle \\ &+ \sum_{a} C_{a}^{(\pi\{\Lambda N\}^{+})} G_{a}^{(\pi\{\Lambda N\}^{+})} \left(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}\right) |S_{\Lambda N} = 0\rangle \left[\left[\pi\Lambda \right]_{1} N \right]_{T=1/2, Tz=1/2}, \{\Lambda N\}_{A} \right\rangle \end{split}$$

Ch. 1: K^{bar}NN, NN=¹E Ch. 2: K^{bar}NN, NN=¹O Ch. 3: $\pi \Sigma N$, $[\pi \Sigma]_{I=0}$, $\{\Sigma N\}_{Svm}$. Ch. 4: $\pi \Sigma N$, $[\pi \Sigma]_{I=0}$, $\{\Sigma N\}_{Asym.}$ Ch. 5: $\pi \Sigma N$, $[\pi \Sigma]_{l=1}$, $\{\Sigma N\}_{Sym.}$ Ch. 6: $\pi \Sigma N$, $[\pi \Sigma]_{l=1}$, $\{\Sigma N\}_{Asym.}$ Ch. 7: $\pi \Lambda N$, $[\pi \Lambda]_{l=1}$, $\{\Lambda N\}_{Sym.}$ Ch. 8: $\pi \Lambda N$, $[\pi \Lambda]_{I=1}$, $\{\Lambda N\}_{Asym.}$

B₁

X

x(3)

 $G_{a}^{(\mathcal{X})}(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)}) = N_{a}^{(\mathcal{X})} \exp \left[-(\mathbf{x}_{1}^{(3)}, \mathbf{x}_{2}^{(3)})A_{a}^{(\mathcal{X})}\right]$

X₁(3)

 M_3

X2⁽³⁾

 B_{2}

 Baryon-Baryon are antisymmetrized on space, spin and isospin as well as label (flavor). Glöckle, Miyagawa, Few-body Systems 30, 241 (2001)

- Spatial part = Correlated Gaussian function
 - ✓ including 3 types of Jacobi coordinates
 - \checkmark projected onto a parity eigenstate of B_1B_2 ,

 $G_{a}^{(X\pm)}\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right) = G_{a}^{(X)}\left(\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right) \pm G_{a}^{(X)}\left(-\mathbf{x}_{1}^{(3)},\mathbf{x}_{2}^{(3)}\right)$

<u>Complex Scaling Method</u>

... Find resonance poles on complex energy plane!

<u>Complex rotation (Complex scaling) of coordinate</u> Resonance wave function $\rightarrow L^2$ integrable

 $U(\theta)$: $\mathbf{r} \rightarrow \mathbf{r} e^{i\theta}$, $\mathbf{k} \rightarrow \mathbf{k} e^{-i\theta}$

Diagonalize $H_{\theta} = U(\theta) H U^{-1}(\theta)$ with Gaussian base,

> Continuum state appears on 20 line.

Resonance pole is off from 2ט line, and independent of ט. (ABC theorem)

Full ccCSM with a pheno. potential

Full ccCSM with a pheno. potential

<u>Hamiltonian</u>

$$\widehat{H} = \widehat{M} + \widehat{T} + \widehat{V}_{NN} + \sum_{\alpha,\beta=K^{bar}N,\pi\Sigma,\pi\Lambda} \widehat{V}_{(MB)\alpha-(MB)\beta}$$

- Kinematics = Non-relativistic
- <u>NN potential = Av18 potential</u>

R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, PRC 51, 38 (1995)

- <u>K^{bar}N-πY potential ... Chiral SU(3)-based potential</u>
 - Theoretical and energy-dependent potential
 - Gaussian form potential

- A. Dote, T. Inoue, T. Myo, NPA 912, 66 (2013)
- Constrained by the latest K^{bar}N scattering length

SIDDHARTA K⁻p data M. Bazzi et al., NPA 881, 88 (2012) Coupled-channel chiral dynamics

Y. Ikeda, T. Hyodo, W. Weise, NPA 881, 98 (2012)

• Ignore YN and πN potentials

A. Dote, T. Inoue, T. Myo, PLB 784, 405 (2018)

<u>2. Formalism</u>

• Fully coupled-channel Complex Scaling Method for "K-pp"

• Self-consistency for energy-dependent potential in coupled-channel case

How to deal with E-dep. potential?

Chiral SU(3)-based potential = Energy-dependent potential

$$V_{ij}^{(I=0,1)}(r) = -\frac{C_{ij}^{(I=0,1)}}{8f_{\pi}^{2}} \left(\omega_{i} + \omega_{j}\right) \sqrt{\frac{1}{m_{i} m_{j}}} g_{ij}(r)$$

- How to treat energy-dependent potentials in many-body system?
- In addition, in coupled-channels cases???

"Self-consistency for Meson-Baryon energy" ... generalize a prescription for single-channel cases (Dote, Hyodo, Weise, PRC79, 014003 (2009))

Self-consistency for K^{bar}N energy

• <u>K^{bar}NN single-channel case</u>

Estimation of the two-body energy in the three-body system

1. Kaon's binding energy:

$$B(K) \equiv -\left\{ \left\langle H_{K^{bar}NN} \right\rangle - \left\langle H_{NN} \right\rangle - m_{K} \right\}$$

2. Define a K^{bar}N-bond energy in two ways:

$$E(KN) = M_N + \omega_K = \begin{cases} M_N + m_K - B(K) & : \text{ Field picture} \\ M_N + m_K - B(K)/2 & : \text{ Particle picture} \end{cases}$$

A. D., T. Hyodo, W. Weise, PRC79, 014003 (2009)

- H_{NN} : Hamiltonian of 2N
- $H_{K^{bar}NN}$: Hamiltonian of 2N+K^{bar}
 - An interacting K^{bar}N pair carries ... 100% of B(K) ... 50% of B(K)

<u>Self-consistency for MB energy</u>

- <u>K^{bar}NN-πYN coupled-channel case</u>
- 1. Consider the coupled-channel Hamiltonian and mass operators,
- 2. Calculate their expectation values with the obtained wave function.
- 3. Using these values, we estimate the **averaged** MB energy.

Estimation of the two-body energy in the three-body system

1. Meson's binding energy:

$$B(M) \equiv -\left\{ \left\langle H_{MB_1B_2} \right\rangle - \left\langle H_{B_1B_2} \right\rangle - \left\langle m_{M} \right\rangle \right\}$$

A. D., T. Inoue, T. Myo, PLB784, 405 (2018)

$$\widehat{H}_{B_1B_2}$$
 : Hamiltonian of 2B
 \widehat{H}_{MBB} : Hamiltonian of 2B+M

2. Define a **MB**-bond energy in two ways:

$$E(MB) = \langle M_B + \omega_M \rangle = \begin{cases} \langle M_B + m_M \rangle - B(M) \\ \langle M_B + m_M \rangle - B(M)/2 \end{cases} \text{ : Field picture} \qquad \widehat{M}_B \text{ : Baryon-mass} \\ \text{ : Particle picture} \end{cases} \widehat{M}_B \text{ : Baryon-mass} \\ \widehat{M}_B \text{ : Baryon-mass} \\ \text{ operator} \end{cases}$$

A. Dote, T. Inoue, T. Myo, PLB 784, 405 (2018)

"K-pp" = $K^{bar}NN - \pi \Sigma N - \pi \Lambda (J^{\pi} = 0^{-}, T = 1/2)$

<u>Binding energy and</u> <u>decay width</u>

<u>Remark</u>

For each f_{π} value, range parameters in the potential are tuned to reproduce the K^{bar}N scattering length.

•	<u>Field p</u> B _{K-pp} Γ _{πΥΝ} /2	<u>icture:</u> = 14 = 8	— 28 — 15	MeV MeV
•	<u>Particle</u> B _{K-pp} Γ _{πΥΝ} /2	<u>ə pictu</u> = 21 = 13	<u>ire:</u> — 50 — 19	MeV MeV

Current result of "K-pp"

4. Relativistic effect

Small mass! $\Rightarrow Is Non-rela. treatment o.k.?$ $K^{bar}NN + \pi N +$

<u>Semi-relativistic treatment of mesons (π and K^{bar})</u>

- Meson ... Semi-relativistic kinematics (SR)
- Baryon ... Non-relativistic kinematics (NR)

$$H = \sqrt{\frac{\mathbf{p}_{Meson}^{2} + m_{Meson}^{2}}{\mathbf{p}_{Meson}^{2} + m_{Meson}^{2}}} + \sum_{i=1}^{2} \left(m_{Baryon(i)} + \frac{\mathbf{p}_{Baryon(i)}^{2}}{2m_{Baryon(i)}} \right) + V_{NN} + V_{MB(SR)}$$

 \checkmark K^{bar}N- π Y potential is reconstructed in SR kinematics.

Pion appears in decay channels. Change of kinematics may affect the decay width???

<u>Case: SIDDHARTA / Field picture / f_n=110 MeV</u>

• Non-rela.

Non-rela. $(B_{K-pp}, \Gamma_{\pi YN}/2) = (17.5, 10.0)$ $[MeV] v^{elimity}$ · Semi-rela.(Meson) $(B_{K-pp}, \Gamma_{\pi YN}/2) = (30.2, 29.3)$

Decay width increases?

5. Summary

K-pp = a prototype of kaonic nuclei

We have developed Fully coupled-channel Complex Scaling Method, by which K⁻pp is completely treated as a resonance of K^{bar}NN-πΣN-πΛN coupled-channel system.

Binding energy and mesonic decay width of "K⁻pp" are obtained as Chiral SU(3)-based K^{bar}N potential constrained with the latest K^{bar}N data (SIDDAHRTA)

K-pp ($J^{\pi}=0^{-}$, T=1/2) ... (B_{K-pp} , $\Gamma_{\pi YN}/2$) = (14--28, 8--15) MeV (Field picture) (21--50, 13--19) MeV (Particle picture)

Self-consistency for meson-baryon energy is considered.

<u>cf) Phenomenological K^{bar}N potential (Akaishi-Yamazaki potential; Energy-independent)</u> $(B_{K-pp}, \Gamma_{\pi YN}/2) = (51, 16) MeV$

Examined Semi-relativistic kinematics for mesons (Preliminary)

Decay width ($\Gamma_{\pi YN}$) seems to become larger, compared with Non-relativistic case.

5. Future prospects

Semi-relativistic treatment (Undergoing)

... Pion mass is small. Influence to decay width?

Examine other K^{bar}N potential

... A sophisticated version of a chiral SU(3)-based K^{bar}N-πY local potential K. Miyahara, T. Hyodo and W. Weise, PRC 98, 025201 (2018)

Non-mesonic decay (K^{bar}NN → YN)

Reaction spectrum

...

... Direct comparison with experimental data. It can be calculated using the Green function obtained with ccCSM. ("Morimatsu-Yazaki Green's function method")

Thank you very much!

References:

• A. Dote, T. Inoue, T. Myo, PRC 95, 062201(R) (2017)

• A. Dote, T. Inoue, T. Myo, PLB 784, 405 (2018)