Holographic Bottom-Up approach to hadron properties in nuclear medium Alfredo Vega

In collaboration with M. A. Martin Contreras

QNP 2018, Tsukuba, Japan

November 14, 2018

Outline

Introduction

Nucleon properties in vacuum using an AdS/QCD model

Nucleon properties in nuclear media with an alternative AdS/QCD model

Final Comments and Conclusions

Applicability to QCD of Gauge / Gravity ideas. 1

- N=4 SYM is different to QCD, but we can argue that in some situations both are closer. Ej: Heavy Ion Collisions.
- Gauge / Gravity ideas can be expanded in several directions. This
 gives us a possibility to get a field theory similar to QCD with gravity
 dual.
- You can use Gauge / Gravity as a nice frame to built phenomenological models with extra dimensions that reproduce some QCD facts (AdS/QCD models).
- AdS / QCD has been used in a successful way to study hadron physics at zero temperature and density, and also at finite temperature and in a dense medium.

¹e.g., see J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Eur. Phys. J. A **35**, 81 (2008).

Extensions of AdS / CFT to QCD, are related at two approaches:

- Top-Down approach.

 You start from a string theory on $AdS_{d+1} \times C$, and try to get at low energies a theory similar to QCD in the border.
- Bottom-Up approach.
 Starting from QCD in 4d we try to build a theory with higher dimensions (not necessarily a string theory).

AdS / QCD models belong to the bottom-up approach, and here with Asymptotically AdS metrics with a non-dynamical dilaton, it is possible to reproduce some of the hadronic phenomenology.

Nucleon properties in vacuum using an AdS/QCD model ²

²T. Gutsche, V. E. Lyubovitskij, I. Schmidt and A. V, Phys. Rev. D **86**, 036007 (2012).
6 of 21

* Electromagnetic Form Factors.

Nucleon electromagnetic form factors F_1^N and F_2^N (N=p,n correspond to proton and neutron) are conventionally defined by the matrix element of the electromagnetic current as

$$\langle p'|J^{\mu}(0)|p\rangle = \bar{u}(p')[\gamma^{\mu}F_1^N(Q^2) + \frac{i\sigma^{\mu\nu}}{2m_N}q_{\nu}F_2^N(Q^2)]u(p),$$

where q = p' - p is the momentum transfer; m_N is the nucleon mass; F_1^N and F_2^N are the Dirac and Pauli form factors, which are normalized to electric charge e_N and anomalous magnetic moment k_N of the corresponding nucleon: $F_1^N(0) = e_N$ and $F_2^N(0) = k_N$.

In AdS / QCD models we consider

$$S = \int d^{d+1} x \sqrt{g} e^{-\Phi(z)} igg(\mathcal{L}_{\Psi} + \mathcal{L}_{V} + \mathcal{L}_{Int} igg),$$

where

$$ds^2=rac{1}{z^2}(\eta_{\mu
u}dx^\mu dx^
u-dz^2),$$

- * Hard Wall case: $\Phi(z) = Cte$ and z between 0 and z_0 .
- * Soft Wall case: $\Phi(z) = \kappa^2 z^2$ and z between 0 and ∞ .

Modes duals to nucleons satisfy the following equation of motion:

$$\left[ie_A^N\Gamma^AD_N-\frac{i}{2}(\partial_N\Phi)e_A^N\Gamma^A-(m_5+\Phi(z))\right]\Psi=0,$$

where

$$D_N = \partial_N + \frac{1}{8}\omega_{NAB}[\Gamma^A, \Gamma^B] - iV_N,$$

and ω_{NAB} and Γ^{A} elements are related with metric used.

$$\Psi(x,z) = \Psi^{L}(x,z) + \Psi^{R}(x,z)$$
 $\Psi^{L/R}(x,z) = \psi^{L/R}(x) e^{-2A(z)} f^{L/R}(x,z)$

In Soft Wall case

$$f_L(z) = N_L (\kappa z)^{5/2} e^{-\kappa^2 z^2/2}$$
 and $f_R(z) = N_R (\kappa z)^{3/2} e^{-\kappa^2 z^2/2}$
 $M_n^2 = 4\kappa^2 (n+2)$

For another side, according to the AdS/CFT dictionary, the $V_{\mu}(p)$ is the source for the 4D current operator J_{μ}^{V} .

$$\left[\partial_z \left(\frac{e^{-\Phi}}{z}\partial_z\right) + \frac{e^{-\Phi}}{z}\rho^2\right]V(p,z) = 0,$$

$$V(Q,z) = \Gamma\left(1 + \frac{Q^2}{4\kappa 2}\right)U\left(\frac{Q^2}{4\kappa 2}, 0; \kappa^2 z^2\right),$$

* Proton Form Factors in AdS / QCD.

$$S = \int d^{d+1}x \sqrt{g} e^{-\Phi(z)} \mathcal{L}_{Int},$$
 $F_1^p(Q^2) = C_1(Q^2) + g_V C_2(Q^2) + \eta_V^p C_3(Q^2)$, $F_2^p(Q^2) = \eta_V^p C_4(Q^2),$

where

$$C_1(Q^2) = \frac{1}{2} \int dz V(Q, z) (f_L^2(z) + f_R^2(z))$$

$$C_2(Q^2) = \frac{1}{2} \int dz V(Q, z) (f_L^2(z) - f_R^2(z))$$

$$C_3(Q^2) = \frac{1}{2} \int dz \ z \ \partial_z \ V(Q, z) (f_L^2(z) - f_R^2(z))$$

$$C_4(Q^2) = 2M \ \frac{1}{2} \int dz \ z \ V(Q, z) (f_L^2(z) \ f_R^2(z))$$

Nucleon properties in nuclear media with an alternative AdS/QCD model ³

³A. V and M. A. M. Contreras, In progress.

⋆ Electromagnetic Form Factors in nuclear media. 4

Assuming that nucleon is quasi-free in the nuclear medium, the electromagnetic current can be expressed as

$$\langle p'|J^{\mu}(0)|p\rangle = \bar{u}(p')[\gamma^{\mu}F_1^{N*}(Q^2) + \frac{i\sigma^{\mu\nu}}{2m_N^*}q_{\nu}F_2^{N*}(Q^2)]u(p),$$

where F_1^{N*} and F_2^{N*} are the Dirac and Pauli form factors in nuclear medium, which are normalized to electric charge e_N and anomalous magnetic moment k_N of the corresponding nucleon: $F_1^{N*}(0) = e_N$ and $F_2^{N*}(0) = k_N^*$.

* Scaling mass. 5

$$\frac{M^*}{M} \sim 1 - 0.21 \frac{\rho_B}{\rho_0}$$

⁴G. Ramalho, K. Tsushima and A. W. Thomas, J. Phys. G **40**, 015102 (2013).

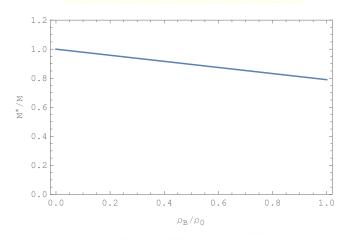
K. Saito, K. Tsushima and A. W. Thomas, Prog. Part. Nucl. Phys. 58, 1 (2007).

* A different approach.

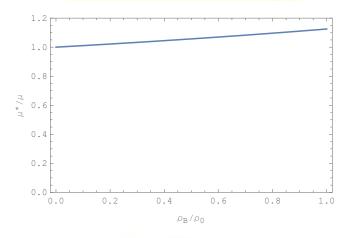
In AdS / QCD models media properties are coded in the background (usually in the metric), but dilaton although not dynamical, it is background also. So

$$\kappa ~
ightarrow ~ \kappa_{\textit{N}} = \sqrt{1-0.14 rac{
ho_{\textit{B}}}{
ho_{0}}} \kappa, ~~ ext{for modes dual to Proton}.$$

Nucleon properties in nuclear media with an alternative AdS/QCD model



Nucleon properties in nuclear media with an alternative AdS/QCD model



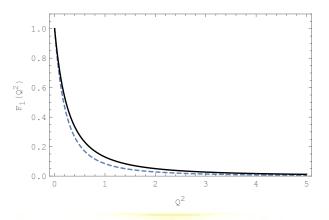


Figure: Dirac form factor for proton in media to $\rho_B/\rho_0=0$ (continous line) and $\rho_B/\rho_0=1$ (dashed line).

17 of 21

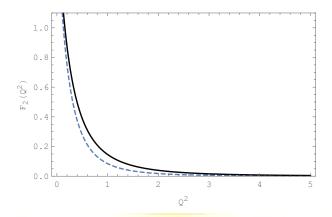


Figure: Pauli form factor for proton in media to $\rho_B/\rho_0=0$ (continous line) and $\rho_B/\rho_0=1$ (dashed line).

18 of 21

Final Comments and Conclusions

Final Comments and Conclusions

- We show that dilaton field can capture part of the medium properties where hadrons are located.
- With a simple approach that considers hadron mass in the nuclear medium, it is possible to calculate electromagnetic form factors.
- In a qualitative sense, we got an agreement with properties of the nucleon in nuclei.
- We plan to use the idea to study other properties and other hadrons in nuclei.

