Search for Excited State of ${}^{4}{}_{\Sigma}$ He Hypernucleus in the J-PARC E13 Experiment

M. Nakagawa Osaka University, Japan

Contents

- Introduction
- Experiment
- Analysis
- Results
- Discussion
- Summary

ΣN interaction Experiment

- Baryon-Baryon interaction
 - NN interaction is well studied
 - AN interaction is also studied.
- ΣN interaction
 - Σ^{-} atom \rightarrow only sensitive to surface of nucleus
 - ΣN scattering \rightarrow difficulty with short lifetime of Σ
 - Working at J-PARC (E40)
 - Σ hypernuclei
 - Possibility of systematic study with many species.
 - Currently only ${}^{4}{}_{\Sigma}$ He is observed.

Σ hypernuclei search

• KEK-PS E167

- First observation
- But cusp couldn't be rejected
- ⁴He(stopped K⁻, π⁻)X reaction
- BNL-AGS E905
 - Confirm existence of ${}^{4}{}_{\Sigma}$ He
 - ${}^{4}\text{He}(K^{-}, \pi^{\pm})X$ reaction @0.6 GeV/c
- ${}^{4}\text{He}(K^{-}, \pi^{-})$ reaction
 - Only ⁴He(K⁻, π ⁻) reaction can produce ⁴₂He
 - We study this in detail using higher momentum
 - Excited state of ${}^{4}{}_{\Sigma}$ He, etc.

J-PARC E13 Experiment Collaboration

T. O. Yamamoto,¹ M. Agnello,^{2,3} Y. Akazawa,¹ N. Amano,⁴ K. Aoki,⁵ E. Botta,^{3,6} N. Chiga,¹ H. Ekawa,⁷ P. Evtoukhovitch,⁸ A. Feliciello,³ M. Fujita,¹ T. Gogami,⁷ S. Hasegawa,⁹ S. H. Hayakawa,¹⁰ T. Havakawa,¹⁰ R. Honda,¹⁰ K. Hosomi,⁹ S. H. Hwang,⁹ N. Ichige,¹ Y. Ichikawa,⁹ M. Ikeda,¹ K. Imai,⁹ S. Ishimoto,⁵ S. Kanatsuki,⁷ M. H. Kim,¹¹ S. H. Kim,¹¹ S. Kinbara,¹² T. Koike,¹ J .Y. Lee,¹³ S. Marcello,^{3,6} K. Miwa,¹ T. Moon,¹³ T. Nagae,⁷ S. Nagao,¹ Y. Nakada,¹⁰ M. Nakagawa,¹⁰ Y. Ogura,¹ A. Sakaguchi,¹⁰ H. Sako,⁹ Y. Sasaki,¹ S. Sato,⁹ T. Shiozaki,¹ K. Shirotori,¹⁴ H. Sugimura,⁹ S. Suto,¹ S. Suzuki,⁵ T. Takahashi,⁵ H. Tamura,¹ K. Tanabe,¹ K. Tanida,⁹ Z. Tsamalaidze,⁸ M. Ukai,¹ Y. Yamamoto,¹ and S. B. Yang¹³ (J-PARC E13-1st Collaboration) ¹Department of Physics, Tohoku University, Sendai 980-8578, Japan ²Dipartimento di Scienza Applicate e Tecnologica. Politecnico di Torino, Corso Duca degli Abruzzi, 10129 Torino, Italy ³INFN, Sezione di Torino, via P. Giuria 1, 10125 Torino, Italy ⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁵Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba, 305-0801, Japan ⁶Dipartimento di Fisica, Universit di Torino, Via P. Giuria 1, 10125 Torino, Italy ⁷Department of Physics, Kyoto University, Kyoto 606-8502, Japan ⁸ Joint Institute for Nuclear Research, Dubna , Moscow Region 141980, Russia ⁹Advanced Science Research Center (ASRC), Japan Atomic Agency (JAEA), Tokai, Ibaraki 319-1195, Japan ¹⁰Department of Physics, Osaka University, Toyonaka 560-0043, Japan ¹¹Department of Physics, Korea University, Seoul 136-713, Korea ¹²Faculty of Education. Gifu University, Gifu 501-1193, Japan ¹³Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ¹⁴Research Center of Nuclear Physics, Osaka University, Ibaraki 567-0047, Japan

J-PARC E13 Experiment

- Physics
 - γ -ray spectroscopy of ${}^4_{\Lambda}$ He
 - Charge symmetry breaking (T. O. Yamamoto, et al., PRL.115.222501)
 - Search for the excited state of ⁴_ΣHe (this study)
- Method
 - Missing-mass spectroscopy of ⁴He(K⁻, π⁻)X reaction
 - Scattering angle : 2-14 deg. (Lab sys.)
 - 4-28 deg. (CM sys.) $\cos\theta_{CM} = 0.9 1.0$
 - Momentum : 1.0 1.5 GeV/c

Analysis Momentum reconstruction

- Momentum reconstruction
 - Beam : QQDQQ system
 - Momentum bite : 20 MeV/c
 - Scattered : Runge-Kutta method
- Background
 - Reject completely
 - ► K beam-through
 - ► K⁻ scattering
 - K⁻ → µ⁻ v decay
 - Veto by Iron

Analysis Momentum reconstruction

- Momentum reconstruction
 - Beam : QQDQQ
 - Momentum bite : 20 MeV/c @ 1.5 GeV/c
 - Scattered : Runge-Kutta method
- Background
 - Reject efficiently
 - ► K⁻ beam-through
 - ► K⁻ scattering
 - $K^- \rightarrow \mu^- \nu$ decay
 - Veto by Iron
 - Difficult to reject
 - $K^- \rightarrow \pi^- \pi^0$ decay (Estimate by simulation)

Analysis Momentum calibration

• Use peaks of Σ^+ hyperon and ${}^4_{\Lambda}$ He g.s.

Results Angular dependence of Σ^+ hyperon production

Cross section every 4 degrees (CM system)

- · Detailed angular dependency measured.
- \rightarrow Useful to adjust parameters of a theoretical calculation

Results Missing-mass spectrum of ⁴He(K⁻, π^-)X reaction

- Ground states of ${}^4_{\Lambda}$ He and ${}^4_{\Sigma}$ He are clearly observed
- Main background is $K^- \rightarrow \pi^- \pi^0$ decay
 - estimate and subtract the distribution

Results Missing-mass spectrum of ⁴He(K⁻, π^-)X reaction

- Every 2 degrees (Lab sys.)
 High statistics
- 2-4 deg.
 - BG is only under ⁴ He
- 8-10 deg.
 - No BG

Results Missing-mass spectrum of ⁴He(K⁻, π^-)X reaction

- Every 2 degrees (Lab sys.)
 High statistics
- 2-4 deg.
 - BG is only under ⁴ He
 - [•] ${}^{4}_{\Sigma}$ He g.s. : Σ QF = 1:1
- 8-10 deg.
 - No BG
 - ${}^{4}{}_{\Sigma}$ He g.s. : Σ QF = 1:2

Discussion theoretical calculation

- Condition
 - Parameters from various experimental data
- Any angle
 - ${}^{4}{}_{\Sigma}$ He g.s. : Σ QF = 1:2

T.Harada *et al.*, PLB **740** (2015) 312

T.Harada *et al.*, PLB **740** (2015) 312

Discussion theoretical calculation

- Why measured QF is small?
 - Interference effect doesn't change the ratio.
 - Possibility of energy dependence of elementary cross section
 - We can extract excited state after adjusting the parameters.

T.Harada *et al.*, PLB **740** (2015) 312

Results Momentum transfer distributions of ${}^{4}{}_{\Lambda}$ He and ${}^{4}{}_{\Sigma}$ He

- Momentum transfer
 - Converted from angle
 - First high-statistics measurement.
- Form factor

٥

- Not _ Initial state : K⁻⁴He
- same
- Final state : π^{-4} He Can be calculated
- with DWIA
- \rightarrow Direct measurement of the size of Hypernuclei

Summary

- Study of ΣN interaction using ${}^4{}_{\Sigma}He$
- J-PARC E13 Experiment
 - Missing-mass spectroscopy of ⁴He(K⁻, π⁻)X reaction
 - Use higher momentum
- Results
 - Angular dependence of Σ⁺ production
 - Spectra of ⁴He(K⁻, π ⁻)X reaction
 - Observed Quasi-free (2-4 deg) is smaller than calculation.
 - Momentum transfer distributions of ${}^{4}_{\Lambda}$ He g.s. and ${}^{4}_{\Sigma}$ He g.s.
 - First measurement with high statistics.
 - Can measure the size of Hypernuclei directly.