The 8th International Conference on Quarks and Nuclear Physics, November 13-17, 2018, Tsukuba, Japan

Production spectra of ³He(π , K) reactions with continuum discretized coupled channels

T. Harada, Y. Hirabayashi[†]

Osaka Electro-Communication University, Neyaawa 572-8530, Japan J-PARC Branch, KEK Theory Center, IPNS, KEK, Tokai, Ibaraki, 319-1106, Japan † Information Initiative Center, Hokkaido University, Sapporo 060-0811, Japan

Outline

- 1. Introduction $-{}^{3}_{\Lambda}$ H puzzle, *nn* Λ bound state?
- 2. Calculations
 - Continuum $pp\Lambda$ states by the CDCC method
 - Microscopic (pp)- Λ folding-model potentials
 - Fermi-averaged amplitudes for πN - ΛK reactions
- 3. Results and Discussion
 - ${}^{3}\text{He}(\pi^{+}, \text{K}^{+})pp\Lambda$ at 1.20GeV/c

- ${}^{3}\text{He}(\pi^{-}, \text{K}^{0}){}^{3}{}_{\Lambda}\text{H}, pn\Lambda \text{ at } 1.20\text{GeV/c}$

4. Summary

<u>1. Introduction</u>

The ${}^{3}_{\Lambda}$ H lifetime puzzle

- Hypertriton $({}^{3}_{\Lambda}H)$ with $B_{\Lambda}=130\pm50$ keV is expected to have lifetime within a few % of the free Λ lifetime ($\tau_{\Lambda}=263.2\pm2.0$ ps), which is supported by precise theoretical calculations.
- Recently, three heavy ion experiments found surprisingly short lifetime for ${}^{3}_{\Lambda}H$ by STAR, HypHI and ALICE. $\tau({}^{3}_{\Lambda}H)$ w.av = 185^{+28}_{-23} ps (-30% with reference to τ_{Λ})
- → To solve the puzzle, experimental measurements of ${}^{3}_{\Lambda}$ H lifetime are planned at J-PARC. ${}^{3}\text{He}(K^{-},\pi^{0}), {}^{3}\text{He}(\pi^{-},K^{0})$ @J-PARC
- Is there a nn Λ bound/resonant state ?
 - The HypHI collaboration reported a bound $nn\Lambda$ system.
 - Theoretical calculations suggest that no ${}^3_{\Lambda}n$ bound state exists.

³H(e,e'K⁺)nn Λ @JLAB, ³He(K⁻, π ⁺)nn Λ @J-PARC \leftarrow ³He(π ⁺, K⁺)pp Λ

<u>In this talk,</u>

We investigate theoretically the inclusive spectrum of the ³He(π , K) reaction at 1.20 GeV/c in the distorted-wave impulse approximation (DWIA), using the Continuum-Discretized Coupled-Channel (CDCC) method.

I will focus on

- i. the Λ production spectra with CDCC in order to well describe the *pp* continuum states above the $p+p+\Lambda$ breakup threshold. ³He(π^+ , K⁺)pp Λ
- ii. the production cross section of the ${}^{3}_{\Lambda}H_{g.s.}(1/2^{+})$ bound state and continuum states, considering the framework of the CDCC. ${}^{3}He(\pi^{-}, K^{0})pn\Lambda$

2. Calculations

<u>Continuum-Discretized Coupled-Channel Method</u> (CDCC)

M. Kamimura et al., Prog. Theor. Phys. Suppl. 89, 1 (1986)

We can describe the spectra and cross sections taking into account the continuum couplings together with the nuclear 3-body breakup processes.

CDCC calculations for ⁶Li+⁵⁸Ni elastic scattering

6Li

Wavefunction of the initial state for a 3He target nucleus

$$\begin{split} |\Psi_{A}\rangle &= \hat{\mathcal{A}} \left[\left[\phi_{0}^{(2N)} \otimes \varphi_{0}^{(N)} \right]_{L_{A}} \otimes X_{T_{A},S_{A}}^{A} \right]_{J_{A}}^{M_{A}}, \\ X_{T_{A},S_{A}}^{A} &= \left[\chi_{I_{2},S_{2}}^{(2N)} \otimes \chi_{1/2,1/2}^{(N)} \right]_{1/2,1/2}, \end{split}$$

Wavefunctions of final states for $\mathrm{pp}\Lambda$

$$\begin{split} \Psi_B &\simeq \Psi_B^{\text{CDCC}}(\boldsymbol{r}, \boldsymbol{R}) \\ &= \sum_{\alpha=1}^{N_{\text{max}}} \left[\left[\left(\tilde{\phi}_{\alpha, \ell_2}^{(2N)}(\boldsymbol{r}) \right) \otimes \varphi_{\alpha, \ell_\Lambda}^{(\Lambda)}(\boldsymbol{R}) \right]_{L_B} \otimes X_{I_\alpha, S_\alpha}^B \right]_{J_B}^{M_B} \\ &\text{ discretized w.f. for continuum pp states} \\ X_{I_\alpha, S_\alpha}^B &= \left[\chi_{I_2, S_2}^{(2N)} \otimes \chi_{0, 1/2}^{(\Lambda)} \right]_{I_\alpha, S_\alpha}, \end{split}$$

Method of momentum bins (discretized for the pp-systems)

$$\tilde{\phi}_{\alpha,\ell_{2}}^{(2N)}(\mathbf{r}) = \frac{1}{\sqrt{\Delta k}} \int_{k_{\alpha}}^{k_{\alpha+1}} \phi_{\ell_{2}}^{(2N)}(k,\mathbf{r}) dk$$

$$\int d\mathbf{r} \, \tilde{\phi}_{\alpha,\ell_{2}}^{(2N)}(\mathbf{r}) \tilde{\phi}_{\alpha',\ell_{2}}^{(2N)}(\mathbf{r}) = \delta_{\alpha\alpha'}$$

$$(^{1}S_{0}, L = 0)$$

$$(^{$$

20

r (fm)

30

25

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

0

5

10

15

11

Coupled equations for the (pp)- Λ systems

$$\begin{bmatrix} -\frac{1}{2\mu_{\alpha}}\nabla^{2} + U_{\alpha\alpha}(\boldsymbol{R}) - (\boldsymbol{E} - \bar{\varepsilon}_{\alpha}) \end{bmatrix} \varphi_{\alpha,\ell_{\Lambda}}^{(\Lambda)}(\boldsymbol{R})$$
$$= -\sum_{\alpha' \neq \alpha} U_{\alpha\alpha'}(\boldsymbol{R}) \varphi_{\alpha',\ell_{\Lambda}}^{(\Lambda)}(\boldsymbol{R}), \qquad \bar{\varepsilon}_{\alpha} = \frac{\bar{k}_{\alpha}^{2}}{2\mu_{\alpha}} - \frac{1}{2}i\Gamma_{\alpha}$$

Microscopic (pp)- Λ folding-model potentials

$$U_{\alpha\alpha'}(\boldsymbol{R}) = \int \rho_{\alpha\alpha'}(\boldsymbol{r}) \big(\overline{v}_{\Lambda N}(\boldsymbol{r}_1) + \overline{v}_{\Lambda N}(\boldsymbol{r}_2) \big) d\boldsymbol{r}$$

Nucleon or transition $\rho_{\alpha\alpha'}(\mathbf{r}) = \langle \tilde{\phi}_{\alpha,\ell_2}^{(2N)} | \sum_i \delta(\mathbf{r} - \mathbf{r}_i) | \tilde{\phi}_{\alpha',\ell_2}^{(2N)} \rangle$ density

Spin-averaged $\Lambda {\sf N}$ potentials

$$\overline{v}_{\Lambda N} = \frac{1}{4} v_{\Lambda N}^{s} + \frac{3}{4} v_{\Lambda N}^{t}$$

$$\underbrace{\mathbf{NSC97f}}_{\mathbf{NSC97f}} \qquad a_{s,t}^{s,t}, \quad r_{s,t}^{eff}$$

Simple Gaussian form

$$v_{\Lambda N}^{s,t}(r) = v_{s,t}^{(0)} \exp\left(-(r/b_{s,t})^2\right)$$

 An singlet -2.51 fm
 3.01 fm

 An triplet
 -1.75 fm
 3.30 fm

Coupled-channels DWIA calculation for Λ production

Strength function

$$S(E_B) = \sum_{B} |\langle \Psi_B | \hat{F} | \Psi_A \rangle|^2 \delta(E_{\pi} + E_B - E_K - E_A)$$

= $(-) \frac{1}{\pi} \operatorname{Im} \sum_{\alpha \alpha'} \int d\mathbf{R} d\mathbf{R}' F_{\alpha}^{\dagger}(\mathbf{R}) \underbrace{G_{\alpha \alpha'}(E_B; \mathbf{R}, \mathbf{R}')}_{\text{Green's function}} F_{\alpha'}(\mathbf{R}')$

Double differential cross sections within the DWIA

$$\frac{d^{2}\sigma}{dE_{K}d\Omega_{K}} = \beta \frac{1}{[J_{A}]} \sum_{M_{A}} \sum_{B} |\langle \Psi_{B} | \hat{F} | \Psi_{A} \rangle|^{2} \delta(E_{K} + E_{B} - E_{\pi} - E_{A}) = S(E_{B})$$

$$= S(E_{B})$$
Production operators with zero-range interaction
$$\hat{F} = \int d\mathbf{r} \left[\chi_{\pi}^{(-)*}(\mathbf{p}_{K}, \mathbf{r}) \chi_{K}^{(+)}(\mathbf{p}_{\pi}, \mathbf{r}) \right] \sum_{j=1}^{A} \overline{f}_{\pi N \to \Lambda K} \delta(\mathbf{r} - \mathbf{r}_{j}) \hat{O}_{j}$$

$$\Rightarrow \gamma_{L}^{(+)}(q \frac{M_{C}}{M_{A}} R) \text{ distorted waves}$$
Recoil factor
$$\mathbf{M}$$
Momentum and energy transfer
$$q = \mathbf{p}_{\pi} - \mathbf{p}_{K}, \qquad \omega = E_{\pi} - E_{K}$$

$$Optimal \text{ Fermi-averaged amplitude for } \pi N-\Lambda K \text{ reactions}$$

$$\overline{f}_{\pi N \to \Lambda K} = \frac{1}{2\pi} \sqrt{\frac{p_K E_K}{v_\pi \beta}} \langle t_{\pi N, K\Sigma}^{\text{opt}}(p_\pi; \omega, \boldsymbol{q}) \rangle$$

Momentum transfer q_{Λ} for Λ production in (π^+ , K⁺) reactions

 \rightarrow The momentum transfer q_{Λ} becomes very large.

Elementary cross section of the $\pi^+p \rightarrow K^+\Lambda$ reaction

 \rightarrow The cross section σ_{Λ} has a strong incident momentum-dep.

<u>Fermi-averaged X-section of the $\pi^++n \rightarrow K^++\Lambda$ reaction on ³He</u>

T. Harada and Y.Hirabayashi, NPA744 (2004) 323.

 $\pi^++n \rightarrow K^++\Lambda$ Cross Section

3. Results and Discussion

³He (π^+ , K⁺) $pp\Lambda$

at 1.20GeV/c

Effects of continuum couplings by the CDCC

³He (π^{-} , K⁰) ³ _{Λ}H, *pn* Λ

at 1.20GeV/c

Inclusive spectrum in ${}^{3}\text{He}(\pi^{-}, K^{0})pn\Lambda$ at 1.20GeV/c

24

Components of the NN-core in $pn\Lambda$ for the spectra

Effective recoil momentum q_{Λ}^{eff} for Λ production in ³He

 \rightarrow The effective recoil momentum becomes

$$q_A^{\text{eff}} \sim \frac{M_C}{M_A} q_A \approx \frac{2}{3} \times 400 \text{ MeV/c} = 267 \text{ MeV/c}$$

<u>Recoil effects of the spectrum in ³He(π^{-}, K^{0})*pn*A</u> q_{Λ} ~326 MeV/c $d + \Lambda p + n + \Lambda$ 6 θ_{lab} =3deg $^{3}\mathrm{He}(\pi^{-},\mathrm{K}^{0})$ section $(\mu \mathrm{b/sr~MeV})[\mathrm{CAL.}]$ 1.20 GeV/c $\theta_{lab} = 3^{\circ}$ ${}^{3}_{\Lambda}H(g.s.)$ w recoil 4 [pn]3S1 **3.7** µb/sr {pn}1S0 2 w/o recoil

3020

Missing mass M_{x} (MeV/c²)

3040

Cross

0

 $0.27 \mu b/sr$

2980

3000

27

3060

<u>Summary</u>

- Calculations of the coupled-channel Green's function with the CDCC provide the ability of describing continuum $NN\Lambda$ states including $N+N+\Lambda$ breakup processes.
 - The production cross section of ${}^{3}_{\Lambda}H(1/2^{+})$ accounts for 3.7 µb/sr at 1.2GeV/c (3°) in the ${}^{3}He(\pi^{-},K^{0})$ reaction.
 - The recoil effects are very important to the production with a very light nuclear target as ³He.

Future Subjects

Convergence of the CDCC model space depending on $(k_{\text{max}}, L_{\text{max}})$ parameters should be checked.

Thank you very much.