

8th International Conference on Quarks and Nuclear Physics

> November 13(Tue) – 17(Sat), 2018 Tsukuba, Ibaraki, JAPAN

Interpretation of transverse momentum and rapidity dependence on angular distributions of Z-boson production at LHC

Wen-Chen Chang Institute of Physics, Academia Sinica collaborating with Jen-Chieh Peng, Evan McClellan, and Oleg Teryaev

Outline

- Lepton angular distributions of Drell-Yan processes
- Comparison with the pQCD calculations
- Interpretations from the geometric picture
 - Transverse momentum distributions
 - Rapidity dependence
- Summary

The Drell-Yan Process

S.D. Drell and T.M. Yan, PRL 25 (1970) 316

MASSIVE LEPTON-PAIR PRODUCTION IN HADRON-HADRON COLLISIONS AT HIGH ENERGIES*

Sidney D. Drell and Tung-Mow Yan

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 (Received 25 May 1970)

On the basis of a parton model studied earlier we consider the production process of large-mass lepton pairs from hadron-hadron inelastic collisions in the limiting region, $s \rightarrow \infty$, Q^2/s finite, Q^2 and s being the squared invariant masses of the lepton pair and the two initial hadrons, respectively. General scaling properties and connections with deep inelastic electron scattering are discussed. In particular, a rapidly decreasing cross section as $Q^2/s \rightarrow 1$ is predicted as a consequence of the observed rapid falloff of the inelastic scattering structure function νW_2 near threshold. PRL 25 (1970) 1523

FIG. 1. (a) Production of a massive pair Q^2 from one of the hadrons in a high-energy collision. In this case it is kinematically impossible to exchange "wee" partons only. (b) Production of a massive pair by parton-antiparton annihilation.

FIG. 2. $d\sigma/dQ^2$ computed from Eq. (10) assuming identical parton and antiparton momentum distributions and with relative normalization.

$$\frac{d\sigma}{dQ^2} = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \mathfrak{F}(\tau) = \left(\frac{4\pi\alpha^2}{3Q^2}\right) \left(\frac{1}{Q^2}\right) \int_0^1 dx_1 \int_0^1 dx_2 \delta(x_1x_2 - \tau) \sum_a \lambda_a^{-2} F_{2a}(x_1) F_{2\bar{a}}'(x_2),$$

Angular Distribution in the "Naïve" Drell-Yan Model

(3) The virtual photon will be predominantly transversely polarized if it is formed by annihilation of spin- $\frac{1}{2}$ parton-antiparton pairs. This means a distribution in the di-muon rest system varying as $(1 + \cos^2\theta)$ rather than $\sin^2\theta$ as found in Sakurai's¹⁰ vector-dominance model, where θ is the angle of the muon with respect to the timelike photon momentum. The model used in Fig.

Drell-Yan Process with the $O(\alpha_s^1)$ QCD Effect

Quark-antiquark $(q\bar{q})$ annihilation with the virtual gluon correction

(C)

(b)

Quark-antiquark $(q\bar{q})$ annihilation with one real gluon

Quark-gluon (qG) Compton scattering

Drell-Yan Process with the $O(\alpha_s^2)$ QCD Effect

Angular Distributions of Lepton Pairs

Angular Distributions of Lepton Pairs from Z/γ^*

 $\frac{d\sigma}{d\Omega} \propto \left[(1 + \cos^2 \theta) + \frac{A_0}{2} (1 - 3\cos^2 \theta) + A_1 \sin 2\theta \cos \phi + \frac{A_2}{2} \sin^2 \theta \cos 2\phi + A_3 \sin \theta \cos \phi + A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi + A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi \right]$ $A_3, A_4 : \gamma^* / Z \text{ interference, sensitive to } \sin^2 \theta_W$

 $A_{5}, A_{6}, A_{7} := 0$, up to $O(\alpha_{s}^{1})$

E615 @ FNAL: Violation of LT Relation

PRD 39, 92 (1989)

252-GeV π⁻+W

E866 @ FNAL: Violation of LT Relation

PRL 99, 082301 (2007), PRL 102, 182001 (2009)

800-GeV p+p, p+d

Angular Distributions of Z Production CDF, PRL 106, 241801 (2011)

Angular Distributions of Z Production CMS, PLB750, 154 (2015)

Angular Distributions of Z Production

ATLAS, JHEP08, 159 (2016)

Drell-Yan Angular Distributions

• Features:

- Distinctive q_T dependence.
- Lam-Tung violation:
 - $1 \lambda 2\nu \neq 0$ for fixed-target experiments
 - $A_0 A_2 \neq 0$ for collider experiments.
- Rapidity dependence for A_1 , A_3 , and A_4 .
- Can we understand these features by pQCD?
- Can we have some simple pictures for interpretation?

NNLO: $O(\alpha_s^2)$

 $LO: O(\alpha_s^1); NLO: O(\alpha_s^2); NNLO: O(\alpha_s^3)$

JHEP11(2017)003

15

pQCD NLO and NNLO Calculations: E615

Drell-Yan Angular Distributions

Features:

- Distinctive q_T dependence.
- Lam-Tung violation:
 - $1 \lambda 2\nu \neq 0$ for fixed-target experiments
 - $A_0 A_2 \neq 0$ for collider experiments.
- Rapidity dependence for A_1 , A_3 , and A_4 .
- Can we understand these features by pQCD?
 Partially YES!
- Can we have some simple pictures for interpretation?

A geometric picture: J.C. Peng, W.C. Chang, R.E. McClellan, O. Teryaev, PLB 758, 394 (2016) W.C. Chang, R.E. McClellan, J.C. Peng, O. Teryaev, PRD 96, 054020 (2017)

Hadron Plane

1) Hadron Plane $(\vec{P}_B \times \vec{P}_T)$

- Contains the beam \vec{P}_B and target \vec{P}_T momenta
- The \hat{z} axis of Collins-Soper frame bisects the directions of \vec{P}_B and \vec{P}_T momenta
- Angle β satisfies the relation $\tan \beta = q_T / Q$

Collins-Soper (γ^*/Z rest) Frame

Quark Plane

- q and \overline{q} have head-on collision along the \hat{z}' axis
- \hat{z}' axis has angles θ_1 and φ_1 in the C-S frame

Lepton Plane

3) Lepton Plane $(\vec{l} \times \hat{z})$

Φ

 \vec{p}_B

 l^+

 ϕ_1 Hadron Plane

 $\vec{p_T}$

Lepton Plane

 \hat{y}

θ

â

 θ_0

Quark Plane

• l^- and l^+ are emitted back-to-back with equal $|\vec{P}|$

• l^- is emitted at angle θ and φ in the C-S frame

Lepton angular distributions with respect to the natural axis \hat{z}' :

$$\frac{d\sigma}{d\Omega} \propto 1 + \frac{a\cos\theta_0}{\cos\theta_0} + \cos^2\theta_0$$

Express the lepton angular distributions with respect to the natural axis \hat{z} :

 $\cos\theta_0 = \cos\theta\cos\theta_1 + \sin\theta\sin\theta_1\cos(\phi - \phi_1)$

Lepton angular distributions w.r.t. the natural axis $\hat{z'}$

$$\frac{d\sigma}{d\Omega} \propto (1 + \cos^2 \theta) + \frac{\sin^2 \theta_1}{2} (1 - 3\cos^2 \theta) + (\frac{1}{2}\sin^2 \theta_1 \cos \phi_1) \sin 2\theta \cos \phi + (\frac{1}{2}\sin^2 \theta_1 \cos 2\phi_1) \sin^2 \theta \cos 2\phi + (a\sin\theta_1 \cos\phi_1) \sin\theta \cos\phi + (a\cos\theta_1) \cos\theta + (\frac{1}{2}\sin^2 \theta_1 \sin 2\phi_1) \sin^2 \theta \sin 2\phi + (\frac{1}{2}\sin^2 \theta_1 \sin\phi_1) \sin^2 \theta \sin\phi + (a\sin\theta_1 \sin\phi_1) \sin\theta \sin\phi.$$

$$\begin{vmatrix} A_0 - A_7 & \text{are entirely described by } \theta_1, \varphi_1 & \text{and } a. \end{vmatrix}$$

$$A_0 = \langle \sin^2 \theta_1 \rangle \qquad A_3 = a \langle \sin \theta_1 \cos \phi_1 \rangle \qquad A_5 = \frac{1}{2} \langle \sin^2 \theta_1 \sin 2\phi_1 \rangle$$

$$A_1 = \frac{1}{2} \langle \sin 2\theta_1 \cos \phi_1 \rangle \qquad A_4 = a \langle \cos \theta_1 \rangle \qquad A_6 = \frac{1}{2} \langle \sin 2\theta_1 \sin \phi_1 \rangle$$

$$A_2 = \langle \sin^2 \theta_1 \cos 2\phi_1 \rangle \qquad A_7 = a \langle \sin \theta_1 \sin \phi_1 \rangle$$

21

Some implications of the angular distribution coefficients $A_0 - A_4$

- $A_0 \ge A_2$ (or $1 \lambda 2\nu \ge 0$). Lam-Tung relation ($A_0 = A_2$) is satisfied when $\phi_1 = 0$.
- Forward-backward asymmetry, *a*, is reduced by a factor of $\langle \cos \theta_1 \rangle$ for A_4 .
- A_0 , A_2 and A_4 increases with q_T monotonically, while A_4 decreases with q_T .
- $A_1 (\propto \langle \sin 2\theta \rangle)$ first increases with q_T , reaching a maximum and then decrease.

θ_1 and ϕ_1 at $O(\alpha_s^1)$: $q\bar{q} \to \gamma^*/Zg$

θ_1 and ϕ_1 at $O(\alpha_s^1)$: $q\bar{q} \to \gamma^*/Zg$

Collins-Soper (γ^*/Z rest) Frame

θ_1 and ϕ_1 at $O(\alpha_s^1)$: $qg \to \gamma^*/Zq$

Collins-Soper (γ^* /Z rest) Frame

CMS Data Interpreted by the Geometric Picture

- $\lambda(q_T)$:determine 42% $q\bar{q}$ and 58% qGprocesses.
- $\nu(q_T)$:determine $\frac{\langle \sin^2 \theta_1 \cos 2\phi_1 \rangle}{\langle \sin^2 \theta_1 \rangle} = 0.77$ (solid curve).
- Violation of Lam-Tung relation 1 λ 2ν: is well described

Cancelation Effect for A₁, A₃ and A₄

•
$$O(\alpha_s^1)$$
: $\theta_1 = \beta, \pi - \beta; \phi_1 = 0, \pi$

(c) (d)

$$q_T$$
 q_T
 $q_{\bar{q},B}$
 $\bar{q}_{\bar{q},B}$
 $\bar{q}_{\bar{q}$

$$q_T$$
 q_T
 g
 q_T
 g
 q_T
 g
 q_T
 q_T
 g
 q_T
 q_T

$$\theta_1 = \pi - \beta; \ \phi_1 = \pi$$

 $\theta_1 = \pi - \beta; \phi_1 = 0$

$$A_{0} = \left\langle \sin^{2} \theta_{1} \right\rangle$$
$$A_{1} = \frac{1}{2} \left\langle \sin 2\theta_{1} \cos \phi_{1} \right\rangle$$
$$A_{2} = \left\langle \sin^{2} \theta_{1} \cos 2\phi_{1} \right\rangle$$
$$A_{3} = a \left\langle \sin \theta_{1} \cos \phi_{1} \right\rangle$$
$$A_{4} = a \left\langle \cos \theta_{1} \right\rangle$$

TABLE I. Angles θ_1 and ϕ_1 for four cases of gluon emission in the $q - \bar{q}$ annihilation process at order- α_s . The signs of A_0 to A_4 for the four cases are also listed.

Case	Gluon emitted from	θ_1	ϕ_1	A_0	A_1	A_2	A_3	A_4
1	Beam quark	β	0	+	+	+	+	+
2	Target antiquark	β	π	+	—	+	—	+
3	Beam antiquark	$\pi - \beta$	0	+	—	+	+	-
4	Target quark	$\pi - \beta$	π	+	+	+	—	_

28

A cancelation effect leads to a strong rapidity-dependence of A_1 , A_3 and A_4 .

CMS Data Interpreted by the Geometric Picture

• $A_0(q_T)$:determine 42% $q\bar{q}$ and 58% qGprocesses.

• $A_1 = r_1 \left[f \frac{q_T Q}{Q^2 + q_T^2} + (1 - f) \frac{\sqrt{5}q_T Q}{Q^2 + 5q_T^2} \right]$ $A_3 = r_3 \left[f \frac{q_T}{\sqrt{Q^2 + q_T^2}} + (1 - f) \frac{\sqrt{5}q_T}{\sqrt{Q^2 + 5q_T^2}} \right]$

$$A_4 = r_4 \left[f \frac{Q}{\sqrt{Q^2 + q_T^2}} + (1 - f) \frac{Q}{\sqrt{Q^2 + 5q_T^2}} \right]$$

 Rapidity dependence of Violation of A₁, A₃ and A₄ is well described

Summary

- The lepton angular distributions in the Drell-Yan process can be used to explore the reaction mechanisms and the parton distributions.
- Fixed-order pQCD calculations could quantitatively describe the data from colliders at large q_T. Deviation seen for the data of fixed-target experiments.

Summary

- Many salient features of the data and the results of fixed-order pQCD calculations could be well understood by a geometric picture.
 - The lepton angular coefficients A_0 - A_7 (or λ , μ , ν) are described in terms of the polar (θ_1) and azimuthal angles (ϕ_1) of the natural $q \overline{q}$ axis.
 - The striking q_T dependence of A_0 , A_2 (or λ , ν) can be well described by the mis-alignment of the $q \overline{q}$ axis and the CS z-axis, i.e. **finite** θ_1 .
 - Violation of the Lam-Tung relation $(A_0 \neq A_2)$ is described by the non-coplanarity of the $q - \overline{q}$ axis and the hadron plane, i.e. **finite** ϕ_1 .
 - The cancelation effect leads to strong rapidity dependence of A_1 , A_3 and A_4 (or μ).

References

- "Interpretation of Angular Distributions of Z-boson Production at Colliders", J.C. Peng, W.C. Chang, R.E. McClellan, and O. Teryaev, Phys. Lett. B 758, 394 (2016), arXiv:1511.08932.
- "Dependencies of lepton angular distribution coefficients on the transverse momentum and rapidity of Z bosons produced in pp collisions at the LHC", W.C. Chang, R.E. McClellan, J.C. Peng, and O. Teryaev, Phys. Rev. D 96, 054020 (2017), arXiv:1708.05807.
- "On the Rotational Invariance and Non-Invariance of Lepton Angular Distributions in Drell-Yan and Quarkonium Production ", J.C. Peng, D. Boer, W.C. Chang, R.E. McClellan and O. Teryaev, arXiv:1808.04398, Phys. Lett. B to be published.
- "Lepton Angular Distributions of Fixed-target Drell-Yan Experiments in Perturbative QCD and a Geometric Approach", W.C. Chang, R.E. McClellan, J.C. Peng, and O. Teryaev, arXiv:1811.03256.