Dynamically integrated transport approach for high-energy nuclear collisions at high baryon density

Koichi Murase (Sophia University)

based on Phys. Rev. C98, 024909 (2018) [arXiv:1805.09024 [nucl-th]]

Collaboration with Yukinao Akamatsu, Masayuki Asakawa (Osaka University) Tetsufumi Hirano (Sophia University) Masakiyo Kitazawa (Osaka University, KEK, J-PARC) Kenji Morita (QST, University of Wroclaw, RNC) Yasushi Nara (Akita International University) Chiho Nonaka (Nagoya University, KMI) Akira Ohnishi (Kyoto University)

The 8th International Conference on Quarks and Nuclear Physics (QNP2018) Nov 16, 2018, Tsukuba, Japan

1

2018/11/16

Introduction

QCD critical point/1st-order phase transition search

Schematic phase diagram of QCD [taken from the 2007 NSAC Long Range Plan] Beam energy scan for high-energy heavy-ion collisions

Search high-baryon density domain of phase diagram in RHIC, SPS, FAIR, NICA, J-PARC, etc.

MODEL

Dynamical modeling

- **Transport models** (such as *hydro model* and *microscopic transport model*) needed to extract *physical information of created matter* from *final hadron spectra*
- Three important notions in lower energy collisions (which are closely related to one another)
- Dynamical initialization:

hydrodynamics initialized via source terms

- Dynamical core-corona separation: thermalized region (*core*) and other part (*corona*)
- Dynamical integration:

microscopic transport model and hydro dynamically coupled to each other

Dynamical initialization

 \mathbf{M}

MM

W

High-energy collisions at RHIC/LHC

Thermalized matter

Lorentz contraction

Lower-energy collisions

detailed description required

dynamical description of this non-equilibrium process = <u>Dynamical initialization</u>

2018/11/16 Okai, Kawaguchi, Tachibana, Hirano, PRC95, 054914 (2017); C. Shen, B. Schenke, PRC, 024907 (2018)

Dynamical core-corona separation

Fixed-time conversion to hydro

Core-corona separation in space and time

Dynamical integration

Conventional integration of hydro & cascades

Dynamical integration

dynamically coupled to each other

JAM+hydro model (JAM 1.9)

RESULTS

Evolution of particles/hydro energies

Slower expansion compared to JAM cascade w/o hydro

2018/11/16

Fluid fraction of different energies

dN/dy for $p/\pi/K/\Lambda+\Sigma^0$

Compared to JAM cascade w/o hydro...

Protons almost the same = Similar stopping power Note: leading hadrons not converted into hydro

Decrease of pions, Increase of strange hadrons = Strangeness enhancement ← chemical equilibration ← conversion to hydro

Results insensitive to $e_f = 0.5 - 1.0 \text{ GeV/fm}^3$

data: NA49, J. Phys. G 34, S951 (2007); NA49, PRC77, 024903 (2008); NA49, PRC78, 034918 (2008)

dN/dy vs $\sqrt{s_{NN}}$

Central Pb+Pb collisions

data: E866 and E917, PLB476, 1 (2000); Blume, Markert, PPNP66, 834 (2011); E802, PRC57, R466 (1998); E895, PRL88, 102301 (2002)

Reproduce dN/dy energy dependence for π , K, p, p^{bar} , Λ , Λ^{bar}

K / π ratio vs $\sqrt{s_{NN}}$

Consistent with experimental "horn" At lower energies: Sensitive to e_f . Higher e_f than $e_p = 0.5$ GeV/fm³ is favored

At higher energies: Less sensitive to e_f

data from NA49, PRC66, 054902 (2002); NA49, PRC77, 024903 (2008); STAR, PRC96, 044904 (2017)

2018/11/16

$(\Lambda + \Sigma^0) / \pi^-$ ratio vs $\sqrt{s_{NN}}$

central Pb+Pb collisions data: NA49, PRL93, 022302 (2004); STAR, PRC83, 024901 (2011)

Describes data well at higher energies. Overestimates at lower energies.

2018/11/16

SUMMARY

Summary/Outlook

JAM + hydro hybrid model Phys. Rev. C98, 024909 (2018) [arXiv:1805.09024 [nucl-th]]

- Dynamical initialization/core-corona sep./integration
- Reproduce various experimental data
 - Rapidity distribution for $p/\pi/K/\Lambda+\Sigma^0$,
 - dN/dy vs $\sqrt{s_{NN}}$ for $\pi/K/p/p^{bar}/\Lambda/\Lambda^{bar}$,
 - K/π , (Λ+Σ⁰)/π ratio vs Vs_{NN}, etc.

Outlook

- Various observables and centrality dependence: multistrange particles, dv₁/dy, v₂, etc.
- Sensitivity to EoS, viscous effects
- Full particle-fluid interaction: energy deposition of particles traveling through the medium

BACKUP

Particles to Fluid

• Absorption of particles into fluid

Source terms for hydrodynamics

$$J^{\mu}(\boldsymbol{r}) = \frac{1}{\Delta t} \sum_{i} p_{i}^{\mu}(t) G(\boldsymbol{r} - \boldsymbol{r}_{i}(t)),$$
$$\rho(\boldsymbol{r}) = \frac{1}{\Delta t} \sum_{i} B_{i} G(\boldsymbol{r} - \boldsymbol{r}_{i}(t)),$$

Lorentz-contracted deposition profile

$$G(\boldsymbol{r}) = \frac{\gamma}{(2\pi\sigma^2)^{3/2}} \exp\left(-\frac{\boldsymbol{r}^2 + (\boldsymbol{r}\cdot\boldsymbol{u})^2}{2\sigma^2}\right),$$

Fluid to particles

• Sample particles by Cooper-Frye formula

Positive contribution of Cooper-Frye formula

$$\Delta N_i = \frac{g_i}{(2\pi)^3} \int \frac{d^3 p}{E} \frac{[\Delta \sigma \cdot p]_+}{\exp[(p \cdot u - \mu_i)/T] \pm 1},$$

$$[\cdots]_+ = \theta(\cdots) |\cdots|$$

Effective baryon chemical potential consistent with EoS

$$\mu_B^{\text{eff}} = \mu_B - V(\rho_B) = \mu_B - K\rho_B$$

Backup: dN/dy comparisons

Blue: Stopping power decreased by conversion of leading particles to hydro

Red: effects of formation time negligible

Green: overshoots strange hadron production with everything converted to hydro (equiv. to one-fluid model)

Backup: m_{T} distributions

Backup: $\langle m_{T} \rangle$ excitation function

proton: decreased by hydrodynamics

others: unaffected by hydrodynamics

Backup: Comparison to UrQMD+hydro

Compared to UrQMD+hydro core-corona model J. Steinheimer and M. Bleicher, PRC84, 024905 (2011)

