

8th International Conference on Quarks and Nuclear Physics (QNP2018)

Nov. 13–17, 2018

Hypernuclear photoproduction spectra calculated with multi-configuration wave functions

Atsushi UMEYA (Nippon Inst. of Tech.)

Toshio MOTOBA (Osaka E-C Univ., YITP)

Kazunori ITONAGA (Gifu Univ.)

Nov. 14, 2018

Recent $(e, e'K^+)$ reaction experiments done at the Jefferson Lab

Shell-model prediction T. Motoba *et al.*, PTPS117, 123 (1994)

Core nucleus calculated with standard *p*-shell model Λ in *s*-orbit

Recent experimental result T. Gogami *et al.*, PRC93, 034314 (2016)

This experiment has confirmed the major peaks (#1, #2, #3, #4) predicted in DWIA by emplying the Λ particle in *s*-orbit coupled with the nuclear core states confined within the *p*-shell configuration. However, it is interesting to observe extra strengths at $E_{\Lambda} = 0$ MeV excitation (a).

The extension of the model space is necessary and interesting challenge in view of the present hypernuclear spectroscopy.

Extension of the model space in the shell model $\binom{10}{4}$ Be case)

Model space for ⁹Be core

- (A) standard model space J_{core}^{-} $(0s)^4 (0p)^5$ (0p-0h)
- (B) extended model space J_{core}^+ $(0s)^3 (0p)^6 \oplus (0s)^4 (0p)^4 (sd)^1$ (1p-1h)

Standard model space for ¹⁰_ABe

(I)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{-})$$
 (II) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{+})$

Extension (1) 1*p*-1*h* (1 $\hbar\omega$) core excitation is taken into account

(a)
$$J_{\text{core}}^{-} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{-})$$
 (b) $J_{\text{core}}^{-} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{+})$
(c) $J_{\text{core}}^{+} \otimes 0s^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{+})$ (d) $J_{\text{core}}^{+} \otimes 0p^{\Lambda} \Rightarrow {}_{\Lambda}^{10}\text{Be}(J^{-})$

Extension (2) Configrations mixed by ΛN interaction

$$\begin{array}{c}
 J_{\text{core}}^{-} \otimes 0s^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0p^{\Lambda} \\
 J_{\text{core}}^{-} \otimes 0p^{\Lambda} \oplus J_{\text{core}}^{+} \otimes 0s^{\Lambda} \\
 \Rightarrow {}^{10}_{\Lambda} \text{Be}(J^{-}) \\
 \Rightarrow {}^{10}_{\Lambda} \text{Be}(J^{+})
 \end{array}$$

Nov. 14, 2018

Configration mixing in ${}^{10}_{\Lambda}$ Be unnatural parity states

In the standard shell model, only natural-parity nuclaer-core states (J_{core}^-) are taken into account. A particle is in the 0s orbit in ${}^{10}_{\Lambda}\text{Be}(J^-)$.

In ${}^{10}_{\Lambda}$ Be(J^+), the energy difference between $\Lambda(0s)$ and $\Lambda(0p)$ is $1\hbar\omega$, and the energy difference between 9 Be(J^-_{core}) and 9 Be(J^+_{core}) is $1\hbar\omega$.

By ΛN interaction, natural-parity nuclaer-core configurations and unnatural-parity nuclaer-core configurations can be mixed.

Extended model space for target nucleus ¹⁰B

Extension of model space for target nucleus ¹⁰B up to 2*p*-2*h* (2 $\hbar\omega$) allows the ¹⁰_{\Lambda}Be production through various configurations.

Nov. 14, 2018

ΛN interaction and Λ single-particle energy

 $\langle N\Lambda | V | N\Lambda \rangle$ Nijmegen NSC97e

Th. A. Rijken, V. G. J. Stoks, Y. Yamamoto, PRC59, 21 (1999)

 ε_s^{Λ} and ε_p^{Λ} are determined to reproduce the #1 (2⁻) and #6 (3⁺) peaks in ${}_{\Lambda}^{12}B$ production cross-section.

 $\varepsilon^{\Lambda}_{s}$ and $\varepsilon^{\Lambda}_{p}$ are applied to $^{10}_{\Lambda}{
m Be}$.

JLab Hall C, E05-115 L. Tang *et al.*, PRC90, 034320 (2014)

Theoretical calculation T. Motoba *et al.*, PTPS185, 224 (2010)

Nov. 14, 2018

Results : Energy levels of ${}^{9}Be$ and ${}^{10}_{\Lambda}Be$

Nov. 14, 2018

Results : Energy levels of ${}^{10}_{\Lambda}$ **Be (comparison with JLab experiments)**

Nov. 14, 2018

Results : Spectroscopic factors of the pickup reaction, ${}^{10}B \rightarrow {}^{9}Be$

Nov. 14, 2018

Results : Cross sections of the ¹⁰B (γ , K^+) ¹⁰Be reaction (1)

Results : Cross sections of the ¹⁰B (γ , K^+) ¹⁰Be reaction (2)

Nov. 14, 2018

Results : Cross sections of the ¹⁰**B** (γ , K^+) ¹⁰_{Λ}Be reaction (3)

						$E_{\gamma} = 1.5$ (GeV	EXP = T. Gog		ami et al, PRC93 (2016)	
⁹ Be (<i>Ji</i>)			10 Be (<i>J_k</i>) CAL			θ = 7 deg				EXP	Fit I
Ji	E _i (exp)	<i>E</i> i (cal)	J _k	E _x	<i>−B</i> ∧	do/	′dΩ	exp	E _x	<i>−B</i> ∧	dσ/dΩ
	C2S	C2S		[MeV]	[MeV]	[nb	/sr]	peak	[MeV]	[MeV]	[nb/sr]
3/2-	0.000	0.000	1-	0.000	-8.600	9.609	21.62	#1	0.00	-8.55±0.07	17.0±0.5
	1.0(rel)	1.0(rel)	<mark>2⁻</mark>	0.165	-8.435	12.008					
F /0-	2 4 2 0	2644	0-	0 710	E 000	11 654					
5/2	2.429	2.044	<u>-</u>	2.712	-5.000	0 201	- 21.05	<mark>#2</mark>	2.78±0.11	-5.76±0.09	16.5±0.5
	0.950	1.020	3	2.000	-5.740	9.091					
7/2-	6.380	6.189	3-	6.183	-2.417	7.625	01 10	#3	6.26±0.16	-2.28±0.14	10.5±0.3
	0.668	0.942	4-	6.370	-2.230	13.505	21.13				
				7.007	0.700	4 405					
			2+(3)	7.807	-0.793	4.495	9.46	#a	8.34±0.41	-0.20±0.40	23.2±0.7
			1+(3)	7.935	-0.665	4.968					
			3+(2)	8.712	0.112	6.150					
			2+(4)	8.828	0.228	1.431	19.91				
			2+(5)	9.002	0.402	9.893	(29.37)				
			3+(3)	9.059	0.459	2.434					
	11.000	10.041	0-	10 105	1 505	0.010					
//2	1 200	10.241	3			3.913	21.90	#4	10.83±0.10	2.28±0.07	17.2±0.5
	1.299	1.300		10.455		17.985					
			1 ⁺ (5)	10.828	2.228	4.598	29.54 (51.44)				
			4+(3)	11.318	2./18	11.185					
			3+(5)	11.543	2.943	13.759					

Nov. 14, 2018

Results : Configrations of J^+ **states corresponding to the new bump**

$J_n^{\pi}(-B_{\Lambda}[\text{MeV}])$	$[J^{\pi}_{ m core}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$	$[J_{\rm core}^{\pi}]j^{\Lambda}$
XS [nb/sr]			
$2^+_3(-0.739)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
4.49		82.5%	15.8%
$1_3^+(-0.665)$		$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-]p_{3/2}^{\Lambda}$
4.97		79.5%	17.9%
$2_4^+(0.228)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
1.43	87.5%	9.4%	2.4%
$2_5^+(0.402)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
9.89	11.3%	70.9%	10.8%
$3_2^+(0.112)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p_{3/2}^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
6.15	31.6%	55.4%	9.7%
$3^+_3(0.459)$	$[5/2^+_2]s^{\Lambda}_{1/2}$	$[3/2_1^-]p_{3/2}^{\Lambda}$	$[5/2_1^-](p_{3/2}p_{1/2})^{\Lambda}$
2.43	67.5%	27.1%	2.7%

Results : Cross sections of the ¹⁰B (K^-, π^-) ¹⁰_AB reaction

In the (K^-, π^-) reaction, the large peak at $E_{\Lambda} = 4.4$ MeV is a *p*-substitutional state via the $p_{3/2}^N \rightarrow p_{3/2}^{\Lambda}$, which is strongly excited by recoilless reaction.

The small peak at $E_{\Lambda} = 0 \text{ MeV}$ corresponds to the new bump and is explained as a mixture of s^{Λ} and p^{Λ} states.

The large peak at $E_{\Lambda} = 4.4 \,\text{MeV}$ $[p^{-1}p_{\perp}^{\Lambda}]$ in ${}^{10}_{\Lambda}\text{Be}$ corresponds to the $[p^{-1}p_{\perp}^{\Lambda}]$ state in ${}^{9}_{\Lambda}\text{Be}$ (⁹Be analog state).

 $p_{\parallel} \qquad \begin{array}{l} \text{The small peak at } E_{\Lambda} = 0 \text{ MeV} \\ \text{ in } {}_{\Lambda}^{10}\text{Be corresponds to the } [p^{-1}p_{//}^{\Lambda}] \\ p_{\parallel}^{-1}p_{//}^{\Lambda}] \text{ state in } {}_{\Lambda}^{9}\text{Be.} \end{array}$

Nov. 14, 2018

$[p^{-1}p^{\Lambda}_{\perp}]$ and $[p^{-1}p^{\Lambda}_{\prime\prime}]$ states of ${}^{9}_{\Lambda}$ Be

T. Motoba *et al.*, PTPS81, 42 (1985) R. Bertini *et al.* (H-S-S Collaboration), NPA368, 365 (1981)

Summary

We have calculated the cross sections in ${}^{10}_{\Lambda}$ Be productions by using the extended shell model to describe the unnatural-parity nuclear core.

- Our new calculation explains the new bump in the JLab experimental results as a sum of cross sections of some J^+ states.
- These states have a large mixture of unnatural- and natural-parity nuclear-core states.
- The new bump in ${}^{10}_{\Lambda}$ Be corresponds to the $[p^{-1}p^{\Lambda}_{\prime\prime}]$ state in ${}^{9}_{\Lambda}$ Be.