Recent Results From the GlueX Experiment

Jon Zarling 2018/11/13

Outline

- Physics motivation
- Photoproduction and GlueX overview
- GlueX light spectroscopy program

 Focus: studying production mechanisms
 Final states of interest
- Additional physics
 - $\circ J/\psi$ threshold production
 - o Baryon sector

Hadron Spectroscopy

 Many QCD states allowed beyond observed mesons and baryons

o Theorized since 1960's

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

... Baryons can now be constructed from quarks by using the combinations (qqq), $(qqqq\bar{q})$, etc., while mesons are made out of $(q\bar{q})$, $(qq\bar{q}\bar{q})$, etc....

Phys. Lett. 8 (1964) 214

 Growing body of evidence for tetraquark, pentaquark candidates in recent years

LHCb collab., PRL 115, 072001 (2015)

QNP 2018 --- J. Zarlin;

Constructing Mesons

- States are classified by quantum numbers J^{PC}
- Using only $q\overline{q}$ constituents:
 - o J = L + S $o P = (-1)^{L+1}$
 - $\circ C = (-1)^{L+S}$
- $q\bar{q}$ allows for numbers: • $J^{PC} = 0^{-+}, 0^{++}, 1^{--}, 1^{+-}, 2^{++}, 2^{-+}, ...$
- $q\overline{q}$ cannot form states:

 $O_{1}^{PC} = 0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, \dots$

• Detection of such J^{PC} implies non- $q\overline{q}$ structure!

q

GLUE

q

q

q

Lattice Predictions in the Light Spectrum

J^{PC}= 0⁻⁺ 1⁻⁻ 2⁻⁻ 3⁻⁻ 4⁻⁻ 2⁻⁺ 4⁻⁺

- Exotic states expected
- Ideally, would like to establish spectrum of states

GLUE

• Potential search channels? • A state decaying to $\pi \eta^{(\prime)}$ in a P-wave would be exotic

Name	J^{PC}	Total Width MeV		Allowed Decay Modes
		\mathbf{PSS}	IKP	
π_1	1^{-+}	81 - 168	117	$b_1\pi, \pi\rho, \pi f_1, \pi\eta, \pi\eta', \eta a_1, \pi\eta(1295)$
η_1	1^{-+}	59 - 158	107	$\pi a_1, \pi a_2, \eta f_1, \eta f_2, \pi \pi (1300), \eta \eta', KK_1^A, KK_1^B$
η_1'	1-+	95 - 216	172	$KK_1^B, KK_1^A, KK^*, \eta\eta'$

QNP 2018 --- J. Zarling

q

q

Probes To Study Light Mesons

- e^+e^- (BESIII, Belle)
- Hadroproduction (COMPASS)
- Photoproduction (GlueX, LEPS)
 - Little data above $E_{\gamma} \approx 3 \text{ GeV}$
 - o To do:
 - Understand production mechanisms for well-established states at $E_{\gamma} \approx 8.5 \text{ GeV}$
 - Study potential final states of interest
 - Future: amplitude analysis of individual/coupled channels

Features of Photoproduction

 Described by t-channel production at GlueX energies • Meson, pomeron exchange
 (≈ 8.5 GeV)
 (≈ 8.5 GeV)

 Polarization: unique observable!

 Provides additional information on exchanges (this talk's focus)
 ⇒ Useful probe in search for exotic states!

GlueX Detector

- Large acceptance spectrometer for charged and neutral states
- Photon beam E:
 - o 8-9 GeV polarized

More than 200 billion events:

- Polarization $P_{\gamma} \approx 0.35$
- o 3 GeV masses reachable

2016: ~10 pb⁻¹
2017: 45 mb⁻¹

- 2017: ~45 *pb*⁻¹
- 2018: ~100 *pb*⁻¹
- Total hadronic cross section ~120 μb

Located at Jefferson Lab, Newport News, VA, USA

GLUE

QNP 2018 ---- J. Zarling

forward calorimeter

DIRC

2018

Production Asymmetry: $\gamma p \rightarrow \pi^0 p$

GLUE

What is exchanged in photoproduction to produce a π^0 ?

Polarization allows us to distinguish positive and negative "naturality" contributions

QNP 2018 --- J. Zarling

π^0 and η Photoproduction Asymmetries

- Production mostly/all from natural exchange (e.g. ρ or ω)
 No strong t dependence
- First measurement for η meson
- First publication with data after Jefferson Lab 12 GeV upgrade!

Asymmetry of π^- Production

B.G Yu (Korea Aerospace U.), PLB 769 262 (16 GeV)
 J. Nys (JPAC), PLB 779, 77 (8.5 GeV)

GLUE

Charge exchange reaction:

- production changes with t
- restricts allowed isospin of exchanges (my thesis analysis)

Vector Meson Production

- Spin-1 kinematics are more complicated
- Additional decay angles $\cos(\theta)$, ϕ \circ Physics encoded in "spin-density matrix elements" ρ_{ik}^{l}

 $W(\cos\theta,\phi,\Phi) = \frac{3}{4\pi} \left[\frac{1}{2} \left(1 - \rho_{00}^{0}\right) + \frac{1}{2} \left(3\rho_{00}^{0} - 1\right) \cos^{2}\theta - \sqrt{2} \operatorname{Re}\rho_{10}^{0} \sin 2\theta \cos\phi - \rho_{1}^{0} - \sin^{2}\theta \cos 2\phi \right]$ $-P_{\gamma}\cos 2\Phi \left(\rho_{11}^{1}\sin^{2}\theta+\rho_{00}^{1}\cos^{2}\theta-\sqrt{2}\operatorname{Re}\rho_{10}^{1}\sin 2\theta\cos\phi-\rho_{1-1}^{1}\sin^{2}\theta\cos2\phi\right)$ $-P_{\gamma}\sin 2\Phi(\sqrt{2}\operatorname{Im}\rho_{10}^{2}\sin 2\theta\sin \phi+\operatorname{Im}\rho_{1-1}^{2}\sin^{2}\theta\sin 2\phi)].$ ω π^{-} π^{0}

Simplest model:

- Complete polarization transfer from photon
- Predicts $\rho_{1-1}^1 = -Im \rho_{1-1}^2 = 0.5$ (all other $\rho_{ik}^i = 0$)

Production Dynamics: $\gamma p \rightarrow \omega p$

Preliminary

Magenta: SLAC

J. Ballam et al., Phys. Rev. D7 (1973)

GLUE

Blue: GlueX

full polarization transfer

More ω SDME's

• 9 measurements. 8 independent.

Magenta: SLAC

J. Ballam et al., Phys. Rev. D7 (1973)

GLUE

Blue: GlueX

full polarization transfer

Beyond Light Mesons: J/ ψ Threshold Production

- Production also probes gluon distributions of proton and multiquark correlations
- See: L. Pentchev's talk Friday 16:30 room 402 for more
- GlueX: happens to cover s-channel threshold of pentaquark candidate $P_c(4450)!$

Baryon Spectroscopy

 Baryon spectroscopy opportunities also available at GlueX

GLUE

• Example: hyperon spectra

GlueX Summary

- Light spectroscopy program:
 - Orders of magnitude improvement in existing high energy photoproduction data
 - Pseudoscalar asymmetries and vector SDMEs: gaining insight into production mechanisms
 - Initial investigations of potential exotic channels underway
- Additional opportunities

 J/ψ threshold production
 Baryon spectroscopy
 - o ...and more!

Questions?

Backup Slides

Spectroscopy: $\gamma p \rightarrow \pi^+ \pi^- p$

- Factor 1,000× more statistics than previous SLAC data
- Additional polarization observables at GlueX to exploit

 Charge exchange reactions: restricts allowed isospin of exchanges (my thesis analysis)