Chiral symmetry breaking by monopole condensation

Aiichi Iwazaki
Nishogakusha University
Introduction

Lattice simulations show that the transition temperature T_{chiral} of chiral symmetry breaking is nearly equal to the de-confinement temperature T_{con}.

Question

$T_{\text{chiral}} \approx T_{\text{con}}$ Accidental or not?

Answer

Not accidental

Monopole condensation leads to the chiral symmetry breaking
Our assumptions

strong assumption
Quark confinement is caused by QCD monopole condensation
QCD monopoles are not present in weakly coupled QCD. But they have been discussed to play important roles in strong coupled QCD such as in quark gluon plasma near or below the transition temperature.

weak assumption
Abelian dominance holds in low energy QCD

Relevant degrees of freedom; abelian gluon fields A^3_μ, A^8_μ
QCD monopoles, massless quarks.

Irrelevant degrees of freedom; massive off diagonal gluons $A^a_\mu, a \neq 3,8$

J. Liao (2007)
Main result

Chiral asymmetric quark pair production takes place in monopole condensed vacuum when a color charge is put in the vacuum (Schwinger mechanism with chiral symmetry breaking)

\[
\left\langle \frac{dQ_5}{dt} \right\rangle = \pm \sqrt{\frac{4\pi\varepsilon^2}{2}} \frac{g^2 L}{\sqrt{2}} \left\langle Q_m \rho_m(0) \right\rangle,
\]

\[Q_5 \equiv N_R - N_L; \text{ chiral imbalance}\]

It vanishes in the vacuum such as \(Q_m \mid \text{no monopole}\) = 0

\(Q_m\); magnetic charge

pair production of massless quark

\(q\) → \(\bar{q}\)

color electric field

color charge

A. I. (2017)
Hereafter we consider quark monopole scattering in SU(3) gauge theory. So, we explain QCD monopoles
QCD (SU(3)) monopoles

three types of the monopoles characterized by SU(3) root vectors

\[\tilde{\varepsilon}_1 = (1,0), \quad \tilde{\varepsilon}_2 = (-1/2,-\sqrt{3}/2), \quad \tilde{\varepsilon}_3 = (-1/2,\sqrt{3}/2) \]

generated by the gauge fields

\[\tilde{\varepsilon}_i \cdot \tilde{A}_\mu \equiv \varepsilon^1_i A^3_\mu + \varepsilon^2_i A^8_\mu = A^\mu (\text{Dirac monopole}) \]

\[\tilde{\varepsilon}_1 \cdot \tilde{A}_\mu, \quad \tilde{\varepsilon}_2 \cdot \tilde{A}_\mu, \quad \tilde{\varepsilon}_3 \cdot \tilde{A}_\mu \]

\[\tilde{\varepsilon}_\mu = (A^3_\mu, A^8_\mu) \]

coupled with three types of quark doublet \(q_i; i = 1, 2, 3 \)

\[q_1 = \begin{pmatrix} q_+ \\ q_- \\ 0 \end{pmatrix}, \quad q_2 = \begin{pmatrix} q_+ \\ 0 \\ q_- \end{pmatrix}, \quad q_3 = \begin{pmatrix} 0 \\ q_+ \\ q_- \end{pmatrix} \]
The important point

Chirality is not conserved in the quark monopole scattering

We consider the quark doublet with charges

\[q = \begin{pmatrix} +g \\ -g \end{pmatrix} \]

scattering on a monopole with magnetic charge \(g_m \)

\[g g_m = \frac{1}{2} \]

The conserved angular momentum is given by

\[\vec{J} = \vec{L} + \vec{S} - gg_m \frac{\vec{r}}{r} \]

\[\vec{L} = \vec{r} \times \vec{p} \quad \text{spin} \]

quark monopole scattering

monopole at \(r=0 \)
from the angular momentum conservation, we find the flip of spin “S” generates the flip of charge “g” in the scattering

\[\Delta(\vec{r} \cdot \vec{S}) - \Delta(g g_m) r = 0 \]

(\(\Delta(Q) \equiv Q_{\text{final}} - Q_{\text{initial}}\))

change of “Q” in the scattering

\[
\Delta(\vec{r} \cdot \vec{S}) = \Delta\left(\vec{r} \cdot (\vec{L} + \vec{S} - gg_m \frac{\vec{r}}{r}) \right) = 0
\]

We note

We note

\[\frac{\vec{p} \cdot \vec{s}}{|\vec{p} \cdot \vec{s}|} \]

\[\Delta(\vec{r} \cdot \vec{J}) = \Delta\left(\vec{r} \cdot (\vec{L} + \vec{S} - gg_m \frac{\vec{r}}{r}) \right) = 0 \]

\[\Delta(\vec{r} \cdot \vec{S}) = \Delta(g g_m) r = 0 \]

\[\Delta(\vec{r} \cdot \vec{S}) \neq 0 \rightarrow \Delta(g g_m) r \neq 0 \]

\[\Delta(\vec{r} \cdot \vec{S}) \neq 0 \rightarrow \Delta(\vec{r} \cdot \vec{S}) \neq 0 \]

case 1 (charge conserved)

\[\Delta(\vec{r} \cdot \vec{S}) = 0 \rightarrow \Delta(g g_m) r = 0 \]

chirality non conserved

case 2 (chirality conserved)

\[\Delta(\vec{r} \cdot \vec{S}) \neq 0 \rightarrow \Delta(g g_m) r \neq 0 \]

chirality non conserved

\[+ g \to - g \]

\[\vec{p}_{\text{in}} \to \vec{p}_{\text{out}} + g \]

\[\vec{S} \to - \vec{S} \]

\[+ g \to - g \]

\[\vec{p}_{\text{in}} \to \vec{p}_{\text{out}} + g \]

\[\vec{S} \to - \vec{S} \]
angular momentum conservation

\[\Delta(\vec{r} \cdot \vec{S}) - \Delta(gg_m)r = 0 \]

In the quark monopole scattering we have either

charge conservation (chirality non conserved)

or

chirality conservation (charge non conserved)

We may choose a boundary condition at the monopole, either chirality or charge conserved boundary condition. In any boundary conditions we see charge are conserved, but, chirality is not.
The charge conservation is strictly preserved in the gauge theory. Thus, the chirality is not conserved. The chiral symmetry is broken around a monopole at $r=0$.

The chirality imbalance is produced by the chiral anomaly.

\[
Q_5 \equiv N_R - N_L
\]

\[
\frac{dQ_5}{dt} = c \int d^3 r \vec{E} \cdot \vec{B} = c \int d^3 r \frac{g_m \vec{r}}{r^3} = c \int d^3 r \frac{g(\vec{r} - \vec{x}(t))}{4\pi |\vec{r} - \vec{x}(t)|^3} \cdot \frac{g_m \vec{r}}{r^3} = c g g_m
\]

What does the chirality change imply?

\[
\Delta Q_5 > 0
\]

Another point of view; Kazama, Yang, Goldhaber (1977)

Another point of view; The chirality imbalance is produced by chiral anomaly

quark at $r=x(t)$ monopole at $r=0$
Chiral asymmetric quark production

The anomaly equation describes chiral asymmetric production around a quark at \(\vec{r} = \vec{x}(t) \) when a monopole is located at \(\vec{r} = 0 \) in a vacuum.

A chiral asymmetric quark pair production when both color charge and magnetic charge are present

\[
\frac{dQ_5}{dt} = \frac{cgg_m}{|\vec{x}(t)|}
\]

The pair production by the chiral anomaly is known to be coincident with the production by Schwinger mechanism.\(^{\text{N. Tanji (2010)}} \)

The chiral asymmetric pair production has been discussed in glasma decay. (The glasma is a flux tube of color electric and magnetic fields produced by high energy heavy ion collisions.)\(^{\text{A. I. (2009), N. Tanji (2018)}} \)
Chiral asymmetric quark pair production in monopole condensed vacuum

\[
\frac{dQ_5(x)}{dt} = c \sum_i \frac{gg_{m,i}}{4\pi |\bar{x} - \bar{r}_i|} = c \int d^3 r \frac{g \rho_m(\bar{r})}{4\pi |\bar{x} - \bar{r}|},
\]

magnetic charge density \(\rho_m(\bar{r}) = \sum_i g_{m,i} \delta(\bar{r} - \bar{r}_i) \)

Chiral asymmetric production when many monopoles are present with their density \(\rho_m(\bar{r}) \). \(\frac{dQ_5(x)}{dt} = c \int d^3 r \frac{g \rho_m(\bar{r})}{4\pi |\bar{x} - \bar{r}|}, \)

We calculate \(\left\langle \frac{dQ_5}{dt} \right\rangle \) when the monopoles condense in vacuum. A. I. (2017)

We find

\[
\left\langle \frac{dQ_5}{dt} \right\rangle \neq 0 \quad \text{when} \quad Q_m|_{\text{vac}} \neq 0 \quad \text{monopole condensation}
\]

\[
\left\langle \frac{dQ_5}{dt} \right\rangle = 0 \quad \text{when} \quad Q_m|_{\text{vac}} = 0 \quad \text{no monopole condensation}
\]
\[
\frac{dQ_5(x)}{dt} = c \int d^3r \frac{g \rho_m(\vec{r})}{4\pi |\vec{x} - \vec{r}|}, \quad \rho_m(\vec{y}) \; \text{field operator}
\]

\[
\lim_{x \to \infty} \left\langle \frac{dQ_5(x)}{dt} \frac{dQ_5(0)}{dt} \right\rangle = \lim_{x \to \infty} \int d^3y d^3y' \frac{c^2 g^2 \langle \rho_m(\vec{y}) \rho_m(\vec{y}') \rangle}{(4\pi)^2 |\vec{x} - \vec{y}||\vec{y}'|} = \left\langle \frac{dQ_5}{dt} \right\rangle^2
\]

\[
= \lim_{x \to \infty} \int d^3y_+ d^3y_- \frac{2c'^2 g^2 f(\vec{y}_-)}{|\vec{y}_+ + 2\vec{y}_- - \sqrt{2}\vec{x}||\vec{y}_+|}
\]

\[
f(\vec{y}_-) = f\left(\frac{\vec{y} - \vec{y}'}{\sqrt{2}}\right) = \langle \rho_m(\vec{y}) \rho_m(\vec{y}') \rangle
\]

\[
\vec{y}_\pm \equiv \frac{\vec{y} \pm \vec{y}'}{\sqrt{2}}, \quad c' \equiv 4\pi c
\]

\[
\approx 8\pi c'^2 g^2 L^2 \lim_{x \to \infty} \int d^3y_- \frac{(1 - \exp(-|2\vec{y}_- - \sqrt{2}\vec{x}|/L)) f(\vec{y}_-)}{|2\vec{y}_- - \sqrt{2}\vec{x}|}
\]

\[
c'^2 \equiv c^2/(4\pi)^2
\]

\[
\approx 8\pi c'^2 g^2 L^2 \lim_{x \to \infty} \int d^3y_- \frac{2\vec{y}_- - \sqrt{2}\vec{x}|/L f(\vec{y}_-)}{|2\vec{y}_- - \sqrt{2}\vec{x}|} = 8\pi c'^2 g^2 L \int d^3y_- f(\vec{y}_-)
\]

\[
= 4\pi c'^2 g^2 L \frac{\langle \int d^3y \rho_m(\vec{y}) \rho_m(0) \rangle}{\sqrt{2}} = 4\pi c'^2 g^2 L \frac{\langle Q_m \rho_m(0) \rangle}{\sqrt{2}}
\]

Cut off \(L; \quad \int_0^L d|y_+|
\]
\[\langle \frac{dQ_5}{dt} \rangle = \pm \sqrt{\frac{4\pi c^2 g^2 L}{\sqrt{2}}} \langle Q_m \rho_m(0) \rangle \]

Magnetic charge
\[Q_m = \int d^3 r \rho_m(\vec{r}) \]

when we put a color charge in a vacuum

\[\langle \frac{dQ_5}{dt} \rangle \neq 0 \quad \text{when} \quad Q_m|_{\text{vac}} \neq 0 \]

\[\langle \frac{dQ_5}{dt} \rangle = 0 \quad \text{when} \quad Q_m|_{\text{vac}} = 0 \]

in the vacuum with monopole condensation in the vacuum with no monopole condensation

We find that the chiral symmetry is broken by the monopole condensation, which suppose to cause the quark confinement.

Transition temperature of chiral symmetry breaking is equal to the de-confinement temperature
A comment

\[\left\langle \frac{dQ_s}{dt} \right\rangle = 0 \]

when there is a pair of a **positive charge** and a **negative charge**; totally neutral
general formula independent of the assumption of abelian dominance

chiral anomaly

\[
\frac{dQ_5(\vec{x})}{dt} = c \int d^3 r \, \vec{E}_a \cdot \vec{B}_a = c \int d^3 r \, \frac{g_a(\vec{r} - \vec{x})}{4\pi |\vec{r} - \vec{x}|^3} \cdot \vec{B}_a(\vec{r}) = c \int d^3 r \, \frac{g_a \rho_m^a(\vec{r})}{4\pi |\vec{x} - \vec{r}|}
\]

external color charge put in a vacuum

presence of magnetic charge

\[
\vec{B}_a(\vec{r}) = \int d^3 y \, \frac{(\vec{r} - \vec{y}) \rho_m^a(\vec{y})}{|\vec{r} - \vec{y}|^3}
\]

We derive the formula only by using the two postulates

\[
\left\langle \frac{dQ_5}{dt} \right\rangle = \pm \sqrt{\frac{4\pi c^2 g^2 L}{\sqrt{2}}} \left\langle Q_m^a \rho_m^a(0) \right\rangle \quad Q_m^a = \int d^3 r \rho_m^a(\vec{r})
\]
Up to now, we have shown that the chiral asymmetric pair production takes place in the monopole condensed vacuum when we put a classical color charge in the vacuum. But, we have not yet shown the presence of chiral condensate in the vacuum.

Here we make a comment that a chiral condensate locally arises around a monopole.
chiral condensate $\langle \bar{q}_\pm q_\pm \rangle = \frac{\text{const.}}{r^3}$ around a monopole

By taking the quantum effects of gauge fields δA_μ in the quark monopole scattering, $(A_\mu = A_\mu (\text{monopole}) + \delta A_\mu)$ we find the quark condensate around a monopole at $\vec{r} = 0$

$$\langle \bar{q}_\pm q_\pm \rangle = \frac{\text{const.}}{r^3}$$

It has been shown that the local chiral condensate arises owing to the chiral anomaly. It is a by-product of the analysis of the Rubakov effect.

Each monopole carries such a local quark condensate

The monopole condensation leads to the chiral condensate.

Effective monopole quark interaction

We have shown that quarks change their chirality in the monopole quark scattering. Effectively the interaction can be described by

\[g' \phi^* \phi \bar{q} q \]

\(\phi \); monopole, \(g' \); coupling con. \(q = \begin{pmatrix} u \\ d \end{pmatrix} \)

\(g' \text{= order of } \Lambda^{-1}_{QCD} \)

Monopole condensation generates constituent quark mass \(m_q \); not chiral condensate

\[g' v^2 \bar{q} q = m_q \bar{q} q; \ m_q \equiv g' v^2 \]

\(\langle \phi \rangle = v \)

When the monopoles are relevant dynamical degrees of freedom to strongly coupled QCD with energy scales \(\leq \Lambda_{QCD} \)

the chiral symmetry \((SU_A(2) \text{ and } U_A(1)) \) is explicitly broken.
Results from the QCD monopole quark interaction

No chiral magnetic effect

Chiral charges imbalance produced in early stages of high energy heavy ion collisions disappears due to the monopole quark interaction near transition temperature. (The monopoles play important roles in QGP. Liao (2007))

Decrease of hadron masses in dense nuclear matter

Constituent quark masses decrease because the monopole condensate decreases in dense nuclear matter owing to color electric fields (the monopole condensate is expelled by the color electric fields in dense nuclear matter)

Pion is not Nambu Goldstone boson

Smallness of pion mass comes from smallness of the monopole quark coupling. Strong coupling constant $\alpha_s > 1$ does not appear in the interaction. $g g_m = 1/2$
conclusion

Chiral asymmetric quark pair productions arise when a classical color charge is put in the monopole condensed vacuum.

The equation indicates that the chiral symmetry is broken by the monopole condensation.

\[
\langle \frac{dQ_s}{dt} \rangle = \pm \sqrt{\frac{4\pi c^2 g^2 L}{2}} \langle Q_m \rho_m (0) \rangle
\]

The magnetic charge

\[Q_m = \int d^3 r \rho_m (\vec{r})\]