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Lattice simulations show that the transition temperature  
of chiral symmetry breaking
is nearly equal to the de-confinement temperature  
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Monopole condensation leads to the chiral symmetry breaking

Introduction



Our assumptions

Quark confinement is caused by QCD monopole condensation

QCD monopoles are not present in weakly coupled QCD. But
they have been discussed to play important roles in strong 
coupled QCD such as in quark gluon plasma 
near or below the transition temperature.

Abelian dominance holds in low energy QCD
Relevant degrees of freedom; abelian gluon fields 
QCD monopoles, massless quarks.
Irrelevant degrees of freedom; 
massive off diagonal gluons 
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Main result 

Chiral asymmetric quark pair production takes place
in monopole condensed vacuum 
when a color charge is put in the vacuum 
( Schwinger mechanism with chiral symmetry breaking)
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Hereafter we consider quark monopole scattering in 
SU(3) gauge theory.
So, we explain QCD monopoles



QCD ( SU(3) ) monopoles 

three types of the monopoles

characterized by SU(3) root vectors
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coupled with three types of quark doublet
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The important point 

Chirality is not conserved in the quark
monopole scattering

We consider the quark doublet with charges
scattering on a monopole with magnetic charge     
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The conserved  angular momentum is given by
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from the angular momentum conservation, we find 
the flip of spin “S” generates the flip of charge “g” in 
the scattering 0)()(  rggSr
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angular momentum conservation 
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charge conservation (chirality non conserved)
or
chirality conservation (charge non conserved )

In the quark monopole scattering 
we have  either 

We may choose a boundary condition at the 
monopole, either chirality or charge conserved 
boundary condition. In any boundary conditions
We see charge are conserved, but, chirality is not. 



The charge conservation is strictly preserved in 
the gauge theory. Thus, the chirality is not
conserved. The chiral symmetry is broken
around a monopole

The chirality imbalance is produced by 
chiral anomaly
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Chiral asymmetric quark production
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The anomaly equation describes chiral 
asymmetric production around a quark at
when a monopole is located at        in a vacuum. 
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a chiral asymmetric quark pair production when both color charge and  
magnetic charge are present  
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The chiral asymmetric pair production has been discussed in glasma decay. 
(The glasma is a flux tube of color electric and magnetic fields produced by 
high energy heavy ion collisions.)     A. I. (2009),  N. Tanji (2018)
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The pair production by the chiral 
anomaly is known to be coincident 
with the production by Schwinger 
mechanism
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Chiral asymmetric quark pair production
in monopole condensed vacuum
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magnetic charge density  

Chiral asymmetric production when many monopoles are present
with their density             .

We calculate              when the monopoles condense in vacuum.  
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in the vacuum with 
monopole condensation  

in the vacuum with 
no monopole condensation  

We find that the chiral symmetry is broken by the monopole
condensation, which suppose  to cause the quark confinement.

Transition temperature of chiral symmetry breaking
is equal to the de-confinement temperature  

when we put a color charge in a vacuum 

 )(3 rrdQ
mm




Magnetic charge 



05 
dt

dQ

A comment

when there is a pair of a positive charge and a negative charge; 
totally neutral
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general formula independent of the 
assumption of abelian dominance 

chiral anomaly 

presence of magnetic charge 
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We derive the formula only
by using the two postulates

a;  index of color charge external color charge 
put in a vacuum



Up to now, we have shown that the chiral asymmetric pair
production takes place in the monopole condensed 
vacuum when we put a classical color charge in the 
vacuum. But, we have not yet shown the presence of
chiral condensate in the vacuum.

Here we make a comment that a chiral condensate locally
arises around a monopole.



By taking the quantum effects of gauge fields               
in the quark monopole scattering,
we find the quark condensate around a monopole at

It has been shown that the local chiral condensate 
arises owing to  the chiral anomaly. It is a by-product of 
the analysis of the Rubakov effect.
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chiral condensate                  around a monopole

The monopole condensation 
leads to the chiral condensate. 
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( baryon decay in nucleon  
collision with GUT monopole )

Each monopole carries such a local quark condensate



Effective monopole quark interaction

We have shown that
quarks change their chirality in the monopole quark scattering.
Effectively the interaction can be described by
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When the monopoles are relevant dynamical degrees of 
freedom to strongly coupled QCD with energy scales 
the chiral symmetry (                         ) is explicitly broken. )1()2(
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Results from the QCD monopole quark interaction

No chiral magnetic effect

Chiral charges imbalance produced in early stages of high energy heavy ion 
collisions disappears due to the monopole quark interaction near transition 
temperature. (The monopoles play important roles in QGP.  Liao (2007) )

Decrease of hadron masses in dense nuclear matter

Constituent quark masses decrease because the monopole condensate
decreases in dense nuclear matter owing to color electric fields
( the monopole condensate is expelled by the color electric fields in dense 
nuclear matter ) 

Pion is not Nambu Goldstone boson 
Smallness of pion mass comes from smallness of the monopole quark coupling.
Strong coupling constant              does not appear in the interaction.1
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conclusion

Chiral asymmetric quark pair productions arise when a classical color charge
is put in the monopole condensed vacuum.
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The equation indicates that 
the chiral symmetry is broken by the monopole condensation.
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