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Why Intertace?

Example
CFT; CFT,  ~ |

CFT trivial

interface boun_déﬁ _____ :

Interface clues two (possibly different) theories

including boundary & defect

=predict the effect of boundaries in real systems




Why Interface?

CFT,
Ll LI operator
CFT,
interface

Interface glues two (possibly different) theories.

viewed as an operator acting on Hilbert space

=Non-local probe, such as Entanglement Entropy




Why Intertace?

€ B 1 B €
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(Generalized) Ward-Takahashi identity

=new selection rule for correlation functions

(cee---)=0 1f # of € 1s odd

developed as Generalized symmetry [(Gaiottol




Why Interface?

AdS/CFT
interface brane

Holographic dual of ICFT involves brane

= holographic approach to quantum gravity

 understanding braneworld holography
« providing tractable model of QG (with brane)
(i.e., island model)




Difficulty in Intertace

* Interface breaks a symmetry

= hard to calculate correlation functions
= classification 1s not well-understood at all

 Fusion 1s 1ll-defined

3 Casimir
divergence

fusion

= algebraic approach is also hard

/\

Remark:
Topological interface is an exception, since it has no
Casimir divergence.
= nice structure, 1.e., fusion category




Difficulty in Intertace

* Interface breaks a symmetry

= hard to calculate correlation functions
= classification 1s not well-understood at all

 Fusion 1s 1ll-defined

Casimir

¥ — )
divergence

fusion

= algebraic approach is also hard

« Solvable concrete examples are very limited

= hard to conjecture universal formula from concrete examples




Introduction

Summary of current situation:

Current studies of interfaces really utilize some
specialized properties, such as topological, free, etc.

Our goal in this talk:

Find model-independent methods for studying interfaces
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 New analytic tools?
Topological =>generalized symmetry




Introduction

Summary of current situation:

Current studies of interfaces really utilize some
specialized properties, such as topological, free, etc.

Our goal in this talk:

Find model-independent methods for studying interfaces

Goal 1n the future
 New classification of interfaces

 New analytic tools?
Topological =>generalized symmetry
Non-topological = “generalized” generalized symmetry

74




Conformal Interface

CFT, CFT,

interface 7

Assumption

No absorption & emission of energy on J:

7@ _ W — 7R _ F®

on J




Conformal Interface

CFT,

interface 7

CFT,

Assumption(Operator formalism)

Map from states in CFT; to states in CFTg,
satisfying

(L%L) _ Z_n(L)) 7=9 (L%R) _ Z_n(R))




ICFT — BCFT

interface boundary
—
Folding
CFT.
CFT; CFTg i

Alternative Interpretation of Assumption

7@ _ 7@ — 7R _ F®

()
W 4 FR = T 4 7®




ICFT — BCFT

interface boundary
—
Folding
CFT.
CFT; CFTg i

Alternative Interpretation of Assumption

Define T, as stress tensor of product CFT, then

Tior = E onJ

= Conformal boundary condition




Bootstrapping BCFT,




BCFT data

+ Spectrum

- OPE coef.

}
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BCFT data

With {ppuik (), ppay (D), Cijk, Cij, iy}
any correlation function can be calculated

Example:
Q
>f = jdAp Pody (Ap) jdAQ Pody(Ag) PQ

boundary

Cip

Solve CFT = Determine {pbulk(A),pbdy(A), Ol CUK}

But how?




Conformal Bootstrap

@ Idea

Equation between two different cuts

Example:

clearly equal!

so-called
modular invariance




Conformal Bootstrap

How to solve?

To solve it, we generally need some assumptions, such as
low-energy spectrum, number of irreps, etc.

But in particular region, one can solve 1t without such
assumptions,
which leads to universal formula in CFT.

Let us see this.




Conformal Bootstrap

_Gem? _ (2m)?

7 only vacuum propagates
Tre B =~e B

Eg

Cc

where E, = -




Conformal Bootstrap

I l '8 -0
C (2m)? ¢
j dA pyu(B)e™” (4-13) = e B 12

By the inverse Laplace trans., we obtain universal formula,

- Cardy formula
Ppuik(d) = exp (27T, /§A)




Conformal Bootstrap

|l (2) vacuum approximation

C (2m)?* ¢

jdApbulk(A)e_'B(A_ﬁ) = e B 12

(3 inverse Laplace transformation

c
Ppuik(d) = exp <Z7T, /§A)




Conformal Bootstrap

Algorithm to obtain universal formula

(D equation between two cuts
(2) vacuum approximation
(3 inverse Laplace transformation




Conformal Bootstrap

Algorithm to obtain universal formula

(D equation between two cuts
(2) vacuum approximation
(3 inverse Laplace transformation

This algorithm can be generalized
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Conformal Bootstrap

Algorithm to obtain universal formula

(D equation between two cuts
(2) vacuum approximation
(3 inverse Laplace transformation

This algorithm can be generalized

ReSU]_t [YK], [Numasawa-Tsiares]

In the limit max{h;},{h;} > c,
Cijk, Cij, 1y are asymptotically universal

which is generalization of Cardy formula




Application [YK], [YK, Weil

interface brane

Implication from universal formula

Self-interacted brane 1s impossible

When attempting to create self-interaction,
black hole is always formed




Bootstrapping BCFT,




Modular bootstrap in higher d?

sl x §1 . §elxst

modular invariance

In 2d, the modular invariance gives us the universality,
2 (2m)? ¢

(2m) > BT

B

On the other hand, S9! x S! dues not have such invariance.

= No similar universality ?

Z(B) =Z(




Modular bootstrap in higher d?

In 2d, the modular invariance gives us the universality,

2 (2m)?
(Zn))ze L

B
B
On the other hand, $%71 x S dues not have such invariance.
= No similar universality ?

Z(B) =Z<

Hint

One can still find a low-temperature description by

Thermal CFTy, -~ Effective gapped QFT on
on 44 X Sp — Sq-1 With myq, o< 1/




Modular bootstrap in higher d?

Thermal CFT, ~ Effective gapped QFT on
on 44 X Sp — Sq-1 With myg, < 1/

KK ansatz for background metricon X;_; X Sé,

ds? = g;;(X)dx'dx! + e2(®) g2
= e29M)[g;;(Ddxidx! + dr?]
§:=e2? and e 2% = 72
In the f — 0 limit, gapped = depend only on background fields
Z[zd_l X 5[13 ] — e Sefrld]

Weyl inv.
Zlg, ¢ =Z2[g,0]

Seeel gl = jdd‘lx Ja(=f + R+ )

Weyl invariance constraints the form,




Modular bootstrap in higher d?

Thermal CFT, ~ Effective gapped QFT on
on 44 X Sp — Sq-1 With myg, < 1/

Higher derivative terms are suppressed
Seelgl = jdd‘lx Ja(—=f + R+ )

Note: g = e™*?g, and e™*® = =% | R is dimensionless.
If making mass dimension explicit,
= only a few parameters f, R = B*R

. .. 2
Note: Wilson coefficients ar( = Suppressed by 3

g

= universality




Modular bootstrap in higher d?

Thermal CFT, ~ Effective gapped QFT on
on 44 X Sp — Sq-1 With myg, < 1/

Higher derivative terms are suppressed
Sertlg] = jdd_lx Ja(—f +ciR+-+)
Note: § = e 2%g, and e 2% = 2

= only a few parameters f, ¢y, - characterize Z [Zd_l X S}; ]
Note: Wilson coefficients are independent of background metric

= universality




Modular bootstrap in higher d?

Alternative derivation of Cardy formula

Setflg] = —ﬁj_l vol(Zg—_1)

In 2d,
_ 2TC

== cq, o =0

Thus, we obtain
J dA p(D) e~FB =~ gSerld]




Modular bootstrap in higher d?

Alternative derivation of Cardy formula

Setflg] = —ﬁc{_l vol(Zg—_1)

In 2d,

Thus, we obtain

21T 2
JdAp(A)e ﬁA“’exp( i nc)

B 12

By the inverse Laplace transformation,

C
log p(A) = 21 /§A




Cardy formula in CFT

[Benjamin, Lee, Ooguri, Simmons-Duffin]

Consider CFT; on $%~! x S;, we have

Seeel gl = _,8‘{‘1 vol(S?~1)

EFT approach remains valid even in higher dimensions,

JdA p(A) e_BA ~ e_Seff[g]

By the inverse Laplace transformation,

1o
(d - Dvol(s*1))* AT

1
1 A) = fd
ogp(4) = fd——

2

Note: The sub-leading term is suppressed by A q,
and its coefficient is determined by f and c;.




Cardy formula in BCFT}

Two ways to place boundaries on $47* x S

[Diatlyk, Khanchandani, Popov, Wang] [Kusuki, Ooguri, Pal]

NG T

sandwiched by S~ ! boundaries S$¢-1 with $¢~2 boundary




[Kusuki, Ooguri, Pall

Cardy formula in BCFT}

Consider BCFT, on S§7* x Sg
Sefelg] = jdd‘lx\/g(—f + R+ )
+jdd_2x\/§(—g + blﬁ 4 )

o:1nduced metric on the boundary boundary contribution
K: trace of extrinsic curvature K, = V, n,
n: unit vector normal to the boundary




Cardy formula in BCFT}

[Kusuki, Ooguri, Pall

ﬁh — N

f expansion of S.¢[g] includes

— vol(s¢-1)

* Bulk leading: —f BTN
d-2)(d-1)vol(S¢~1
* Bulk sub-leading: Cq (d=2)(d-1)vol( )

23d—3

vol(s3-2) related to g-function in 2d
—9 ,Bd_z

* Boundary leading:

= Next leading comes from the boundary leading




Cardy formula in BCFT}

[Kusuki, Ooguri, Pall

Cardy Formula in BCFT,

d ((d -~ 1)vol(§d‘1)>cll R
—1 2

1
log p(&) = fa—
2—d
d

+f @ g vol(s4-2) ((d - 1)V201(§d_1)> AT

d-3
+0 (A d boundary contribution




Information

AdS/ICET




ICFT = BCFT

|-~

BCFT picture obscures unique properties of ICFT

 Energy transmission from L to R
« Entanglement between L & R

which are encoded in BCFT but make sense only in ICFT




Transmission Coefficient
[Quella, Runkel, Watts]

E trans

Ein

Transmission coef. can be extracted by

[Meineri, Penedones, Rousset]

T =" (T, (DTrw)) = —&

CL/R Z(Z—W)4




Transmission Coeftticient
[Quella, Runkel, Watts]

Two trivial cases

topological boundary

J =1 J =0

max min




Entanglement

Vi, WY

/////// \\\\\\\\\\\
entanglement
Definition
1
n) ._
Sy, = T nlogTrpZ
pa= Trzp

* Entanglement Entropy := lim S, (n)

n-1
« Measuring the amount of entanglement # of EPR pairs)




Entanglement

—_—

Interface

Important quantity in ICFT

Amount of entanglement (# of EPR pairs) across interface

Cetr, |A|

Sy = —trpylog py = ?log?

[Sakai, Satoh]
Alternative interpretation

transmitted information  c.¢

Tinfo — —
L/R incident information CL/R

[Wen, Wang, Ryul




Corr as Information Transmission

[Wen, Wang, Ryul, [Karch, YK, Ooguri, Sun, Wang]

time
t A EE under global quench
EPR pair

A

EE under global quench

Sp = # Cefr t

partially transmit

Ceff
C

= 1nformation transmission




Issue

BCFT picture obscures unique properties of ICFT

e T : Energy transmission from L to R
* Cqff - Entanglement between L & R

which are encoded in BCFT but make sense only in ICFT

Problem Q
Hard to calculate both T and c¢

Only computed in a few examples by model-specific
methods

= How can we overcome this problem?




AdS/ I CFT black dotted line = AdS, slice

AdS/CFT AdSs

. d xZ _ dtz ’.".‘ ‘.“‘ E ::' ’,»
ds“ = coshr 5 + dr o8
X

3
3
3
.
-
.
.
.
.
.
*
L
23
‘e
o

each AdS, slice has a different
warp factor A(r)

AdS/ICFT . ..

dx? — dt? 2% 0008
ds? = 24 + dr? 54

22
Details of interface
1s encoded in A(r)

.
R o
. .
. o*

. .

.
.
.
.
‘e
.




Ad S/ I CFT each AdS, slice has a different

warp factor A(r)
AdS/ICFT . ..

2 3.2
ds? = ¢24[) dx” —at + dr?

22
_

Details of interface

1s encoded in A(r)

Example:
- AdS: e24(r) = coshr
- Janus: e24(r) = %(1 + /1 = 2yZcosh Zr)

(Generic interface is obtained from generic A(r)

= universal information of interface 1s encoded as
universal property of A(r)




AdS/ICET

AdS/ICFT

2 3.2
ds? = 24 dx = at + dr?

A Interface

Gravity dual of EE (Ryu-Takayanagi formula)

& = Area(I’,)
a= W\ Ta6y
or,=0A

still works in AdS/ICFT




Universal Bounds

* Holographic c¢f
[Ryu, Takayanagil

* Holographic c¢; 5

[Bachas, Baiguera, Chapman, Policastro, Schwartzman]

Point: Both are determined by A(7)

e Generalized holographic ¢ theorem (NEC)
A () < e=2A®)

= upper bound on c.¢f [Karch, YK, Ooguri, Sun, Wang 23]

« Comparison between holographic c.¢s &

= upper bound on ¢ [Karch, YK, Ooguri, Sun, Wang ’24]




Universal Bounds

[Karch, YK, Ooguri, Sun, Wang]x 2

* Holographic c¢f
[Ryu, Takayanagil

« Holographic c;

[Bachas, Baiguera, Chapman, Policastro, Schwartzman]

Point: Both are determined by A(7)

Result

0 < c;p < Cesf < min(cy, Cr)
@ @

(D The amount of energy transmission can never exceed the
amount of information transmission

(2) Any interface decreases entanglement




Example: free boson

Cerr < min(cy, cg)

LR & Ceff \/

1.0f

0.8

0.6 i - CIR

i Ceff
04}

0.2

cir & coff are parametrized by one parameter s € (0,1);
CLr = S*

Coff = %+ s+ % ((s + 1)log(s + 1)logs + (s — 1)Li,(1 —5s) + (s + 1)Li2(—s))




Example: free fermion
Cefr < min(cy, cg)

LR & Ceff \/

0.5 r

0.4F

0.3:— — CLR

[ Ceff
0.2 r

0.1F

cir & coff are parametrized by one parameter s € (0,1);

52

=g

Coff = > ; 1 — % ((s + 1)log(s + 1) logs + (s — 1)Li,(1 —s) + (s + 1)Li2(—s))




Example: defect perturbation

6S = Ajdwqb(w)
14

Setup: general CFT

CFTL - CFTR

Perturbation by defect field ¢
6S =21 j dw ¢(w)
14
It has been shown 1n [Brehm],

1
Ceff=C(T+Z(1—T)>+O(/12)

This 1s consistent with A expansion of c.¢ 1n free fermion.
Since c;p = cT and 0 < T <1,

CLR <= Ceff




Discussion




Summary

Our Goal
Model-independent methods in ICFT

Conformal Bootstrap

Equation between two cuts = Asymptotic formula

This approach can be applied to any CFT @

Resulting universal formula has important implications for
quantum gravity




Summary

Our Goal
Model-independent methods in ICFT

AdS/CFT

Known constraints on gravity = Nontrivial constraints on CF'T

Example:

(Energy transmission) < (Information transmission)




Other topics 1n ICKFT

 New model-independent method [Furuta, YK, Onagil

— Phantom current
CET, | CFT CFT, o _
L B T e hidden in CFT; ® CFTg

Focusing on the hidden structure—the phantom current—
shared by many interfaces enables a model-independent
computation of the transmission coefficient.

« Parity action on interface [Harada, Kaidi, YK, Liu]

a = ZZz(sza)pu(ijfz)w(nga)xap,xw (@y

Xy wp v,o




Other topics 1n ICKFT

* Conformal manifold implies exactly marginal operator?
[Komatsu, YK, Meineri, Ooguri]

(T, — Tgr)/64 |7)T_

— °
oAL—-0

CFTh4s2 CFTy CFTy

The interface between deformed and undeformed CFT is useful
to study CFT deformation.

One can show that a conformal manifold implies the existence of
exactly marginal operators.

Thand o



Appendix

® Universal Asymptotic Formula

® AdS/BCFT
@® Calculation of EE in ICFT
® Universal Bound on c.¢
»  Holographic proof
*  Entropic proof
® Universal Bound on c¢;p
*  Holographic proof
*  Check 1in non-holographic CFTs
® Higher dimensional generalization



Universal Asymptotlc Formula

[YKI, [Numasawa-Tsiares]

boundary

j dhy, p*"(hp, hp) CiipCpoFl (P11 = 2) = f dhp p®% (hp)(Cip)2Fii (P2)

1—-z«K1

FLEO|1—2) = | dhp p®¥ (hp)(Cip)2F/E(Pl2)




Universal Asymptotic Formula

[YK], [Numasawa-Tsiares]

boundary ole
| hy Py 1y Cap Con P11 = 2) = [ e 0™ (1) G2 CPI2)
1-z«K1
?”(0|1 —z) = | dhp Pbdy(hp)(czp)zf/_"u(mz)
Fusion
transformation FIO|1 —2) = J dhp FOP[ ]T (P|z)

theory-independent




Universal Asymptotic Formula

[YK], [Numasawa-Tsiares]

boundary ole

j dhy, P (hy, hy ) Cuip Cpo Pl (011 = 2) = | dhp p° (hp) (Cip)?Fi (P12)

Lozt FiEO11 = 2) ~ [ dhp pD (hp) (Cop)2F (P
i (0] z) p P (hp)(Cip)?Fi; (Pl2)
e I
usion
transformation FEO|1 —2) = J dh, F li i] FE(P|2)
i P 1 0OP i i i

theory-independent




Universal Asymptotic Formula

[YK], [Numasawa-Tsiares]

boundary Sie
j dhy, PP (B, hy)Ciip Cpo it (p11 — 2) = [ dhp PP (hp) (Cp)2FE(P12)
1-z«K1
FLOI1—2) = | dhp pPP (hp)(Cip)?F (Plz)
. hp, >
Fusion 6 hp >
transformation Fi0|1-2) = J dhp Fyp E ]Tu (P|2)

theory-independent




Universal Asymptotlc Formula

[YKI, [Numasawa-Tsiares]
: sy
©-
®-
Result

Cijk, Cij, Ciyx = fusion matrix, if max{h;},{h;} > c

Note: fusion matrix does not depend on theory




Appendix

Universal Asymptotic Formula

AdS/BCFT
Calculation of EE in ICFT
Universal Bound on cq¢
Holographic proof
Entropic proof
Universal Bound on ¢
Holographic proof
Check 1n non-holographic CFTs
Higher dimensional generalization



Application [YK], [YK, Weil

AdS/BCFT
I = — . j d3x@(R—2A)+zm-fdl-— ! szxx/ﬁ(K—T)
e lénGy Jyy, o " 8nGy 0
l
E-H action massive particle ETW brane
5
Né/CU
S

& bulk

4 direction

~
~

\\

Asymptotic bdy = BCFT,




Application

[YK], [YK, Weil

AdS/BCFT

1

1

= — 3 — . . — 2 _
lgrav = — T i jMd x g(R = 2A) +Zml [ ai —y jQ d?xVh(K —T)

E-H action

massive particle \1 ETW brane

Q
éz? Extra assumption
&/
direction pl pl

Asymptotic bdy = BCFT,

= extension of
validity regime of
asymptotic formula




Appendix

Universal Asymptotic Formula

AdS/BCFT
Calculation of EE 1in ICKFT
Universal Bound on cq¢
Holographic proof
Entropic proof
Universal Bound on ¢
Holographic proof
Check 1n non-holographic CFTs
Higher dimensional generalization



Calculation of EE

Our setup

Interface

Interface




Calculation of EE

Our setup

Interface

Interfac

—

Conformal map
z— logz




Calculation of EE

Interface

Interfae

210
k
2 log—
5 XS]
Replica trick
_ iy (M) m _ 1 Zn
Sy = }ll—rgSA , Sy = — log—(zl)n

where the replica partition function is

n

, PB=

_By B
Zn=tr(e 21 g 0721 1)




Calculation of EE

Interface

Replica trick

Interface

o 2=

R ey =t = =

Hamiltonian in BCFT is
conventionally defined on [0, 7],

O ( W _ S )
HY —rx(L
& 24

conv
But for convenance, we use

_ iy (M) : :
%4 = LI—IESA ’ ,BH(l) — I Hc(é)nv
where the replica partition funcrromrTs \ﬁ
B B n : . .
Z, = trle=2H" 7 ¢72HPgt) B = i HO = 1© _ %




Calculation of EE

Open-closed duality

B B n (21':)2
Zn=tr (e_ZH(l) 7 e_ZH(Z)JT) = (Ble 2B in |B)

where H,, is the Hamiltonian of the theory with 2n interfaces.
(B is some boundary condition imposed on entangling surface.)

2

In the high-temperature limit g = ; — 0,
og— -

only the vacuum (= A?)propagates through the cylinder,

_(2m)?
Z, ~e 2np

AO

Thus, we have

1 Z 2 (A [

(n) n n 0
s = 1 = — nA? |log-
4 1—n0g(Zl)n 1—n(n " 1) o5




Calculation Of E E Just a formal expression

Open-closed duality No simple formula is known

=

_(2m)?
|B)

] B " @em?
Ly =tr (e_ZH(l) Je ZH(Z)TL) = (Ble 2mF Hn

where H,, is the Hamiltonian of the theory with 2n interfaces.

(Def) Effective central charge

12n A
Coff = lim (nA(l) — —n>,

n-»11 — n2 n

where A? is the vacuum energy in the 2n-interface Hilbert
space.

=Is this useful to give insights into general interfaces?

No nice property is known for A?.




EE 1n various setups

1 1
1 1
1 1
: :
(1) one-side i (i1) symmetric i (iii) asymmetric
Interface i i
1 1
CFT, | ! CFT, CFT,
1 1
| | A
X : X
a W e
a 1 Gl
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
: :
Interface : !
1 1
| |




EE 1n various setups

(1) one-side

Interface

(i1i) asymmetric

(i1) symmetric

CFT; CFT,

A
X

N o~

NN




EE 1n various setups

(i) one-side (i1i) asymmetric

(i1) symmetric

Interface
CFTZ CFT]_ CFT2
A
X
L AL *
4 12

g _ Ceffy L _ Gt Cerry L
4 3 TE A 6 gne

Conjectured from
the gravity side

NN




EE 1n one-side setup

Our setup

Interface

Interfac

—

Conformal map
z— logz




EE 1n asymmetric setup

Our setup

Conformal map
z— logz




EE 1n asymmetric setup

Interfac

Hamiltonian

mlogi ﬁ
6 TE

1, L
(B|e n'%8reln 7 ¢

L

L
e nlogEA

1 L

1 L
0 _1, Lo
nXe n1087eAcrTy

Conjecture from gravity
1s now proven!
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Universal Asymptotic Formula

AdS/BCFT
Calculation of EE in ICFT
Universal Bound on c¢
Holographic proof
Entropic proof
Universal Bound on ¢
Holographic proof
Check 1n non-holographic CFTs
Higher dimensional generalization



Holographic EE 1n ICFT

x 2

AdS; 5 5
J ds? = ¢2A) dx” —dt +d

r

2

A

Relation between ¢ and A(7):

3 1
LT 26y A'()
3 1
Cp = — ra
%GN A'(=0) 2 R-T formula
C —_ - eA(rmin)
eff ZGN

where 71,5 1s 7 that leads to the minimum value of A(r).




Holographic EE 1n ICFT

AdS; 3 3
J ds? = ¢2A) dx” —dt + dr?

x 2

>

Generalization of holographic c-theorem (=NEC):

A"(r) < —ke240)

where k 1s the sign of the constant curvature of the 2d slice.

Remark:
« k =0 leads to the standard c-theorem.
 k = —1 makes the inequality weaker, so nobody is

interested in this case. But now we make use of this!




Calculation of EE in ICFT

Define
F(r) = A'(r)? + e 241
Then,

F'(r) =2(4"(r) — e 240 A'(r)




Calculation of EE in ICFT

Define Proposition 1

F(r) = A'(r)? + e~24() <

When approaching infinity, we

reach AdS;, 1.e. A(r) = cosh(r).
Then,

=  F(fo) = A'(10)°

F'(r) =2(4"(r) — e 240 A'(r)




Calculation of EE in ICFT

Define Proposition 1

F(r) = A'(r)? + e~24() <

When approaching infinity, we

reach AdS;, 1.e. A(r) = cosh(r).
Then,

F’(T') — Z(AII(T.) _ e_ZA(r))A’(T') = F(ioo) — A’(ioo)z

<0 (+NEQ) ? Proposition 2
= F’(Tmin) — A,(Tmin) =0

= F(rmin) — ¢~ 2A(Tmin)

F(rpin) 1s the maximum of F(r)




Calculation of EE in ICFT

Proposition 1 Proposition 3
F(£o0) = A'(£0)? _ 3 1
T 26y A'()
Proposition 2 o= — 3 1
F(Tiin) = e~ 2A(min) K 26y A'(—w)
Coaff = i eA(Tmin)
F (11qin) 1s the maximum of F(r) e Gy

(Result) Universal upper bound

F(Tmin) = F(ioo)

= e_ZA(Tmin) > A’(ioo)z
AdS version of

= Coe < min(cy, Cr) ~ holographic c-theorem




Result

(Result) Universal upper bound

Ceff < min(cy, cg)

(Interpretation)

Any interface decreases entanglement.

Interface

w @
> ¢ ~

OV\/\/\/\/\/\/\/\/\/\/\/\/\/.




Result

(Result) Universal upper bound

Ceff < min(cy, cg)

(Interpretation)

Any interface decreases entanglement.

Proof without AdS/CFT?

= Entropic c-theorem (see details in our paper or App.)




Upper bound from CFT

How can we show the upper bound on c.¢ on the CFT side?

On the gravity side, the holographic c-theorem is the key!

=The c-theorem may be useful on the CFT side.

Key tools to derive entropic
o c-theorem:

(1) S(b) +S(c) = S(a) + S(d)

(2) lalld| = |bl|c|




Entropic c-theorem

Interface Key tools to derive entropic
c-theorem:

(1) S(b) +S(c) = S(a) + S(d)

(2) lalld| = |bl|c|

Remark:
These two sti1ll work in ICFT.

S(b) and S(c) are evaluated using the formula (ii).




Entropic c-theorem

Interface Key tools to derive entropic
c-theorem:

(1) S(b) +S(c) = S(a) + S(d)

(2) lalld| = |bl|c|

(Result)
|d| > |a]

A CFT version of the proof

= Cefr < Min(cy, ¢3)




Appendix

Universal Asymptotic Formula

AdS/BCFT
Calculation of EE in ICFT
Universal Bound on cq¢
Holographic proof
Entropic proof
Universal Bound on ¢
Holographic proof
Check 1n non-holographic CFTs
Higher dimensional generalization



Holographic c;

metric

dx? — dt?
ds? = Q(6)? < 22 + d92>, 0€(—m/2,t/2)

effective AdS radius
Q(6)*

[(0) =
© V()2 + Q'(6)2
effective brane tension (= o(60))
do QO)I'(0)|

8l
A6~ 1(9)2 /00y — 10)?

Gravity calculation of ¢;

> 1+1+8G -
CLR—GN lL lR TGO




Simple bound [Karch, YK, Ooguri, Sun, Wang]

Gravity calculation of ¢,

N ESNE A I
CLR_GN lL lR TGO

o 1s complicated but has simple bound;

/2 Q0)|l'(0)]
do = do
SnGNJ ’ j—n/z 1(6)2/Q(6)2 — 1(9)?2

j% 11 (0)] f dil |11 1 1
> | “ap e R _ -
_% 1(0)2 [2

lL lmin

lmin lR

Thus, we obtain

3lmin
N




Result

(Result) Universal lower bound

CLR = Coff

(Interpretation)

The amount of energy transmission can never exceed
the amount of information transmission.

k‘
@ *
)
S
%, <
excitation

Amount of transmitted energy

z,?f} v
%.
2
Z( .
(o
%
excitation

Amount of transmitted information
(=# of transmitted EPR pairs)




Result

(Result) Universal lower bound

CLR = Coff

(Interpretation)

The amount of energy transmission can never exceed
the amount of information transmission.

Is the inequality sharp?

Only two possibilities:
© Clp=Cer=0 (& totally reflective)
O G = G = @ = @ (& totally transmissive)




Result

(Result) Universal lower bound

CLR = Coff

(Interpretation)

The amount of energy transmission can never exceed
the amount of information transmission.

Beyond holography?

= One can check 1n some examples:
* free boson
* free fermion
* defect perturbation




Example: free boson

Cerr < min(cy, cg)

LR & Ceff \/

1.0f

0.8

0.6 i - CIR

i Ceff
04}

0.2

cir & coff are parametrized by one parameter s € (0,1);
CLr = S*

Coff = %+ s+ % ((s + 1)log(s + 1)logs + (s — 1)Li,(1 —5s) + (s + 1)Li2(—s))




Example: free fermion
Cefr < min(cy, cg)

LR & Ceff \/

0.5 r

0.4F

0.3:— — CLR

[ Ceff
0.2 r

0.1F

cir & coff are parametrized by one parameter s € (0,1);

52

=g

Coff = > ; 1 — % ((s + 1)log(s + 1) logs + (s — 1)Li,(1 —s) + (s + 1)Li2(—s))




Example: defect perturbation

6S = Ajdwgb(w)
14

Setup: general CFT

CFTL - CFTR

Perturbation by defect field ¢
6S =1 J dw ¢(w)
1
It has been shown 1n [Brehm],

1
Ceff=C<T+Z(1—T)>+O(AZ)

This 1s consistent with A1 expansion of c.¢ 1n free fermion.
Since c;p = cT and 0 < T <1,

CLR <= Coff




Comment

In three examples, cq¢ 1s a function of ¢;p,
which means that c.g and ¢ have the same information.

Is this true?

Answer 1s NO.

While c; 1s given by an integration over the entire region,
Cerf depends only on the minimal value of A(7).

= Relation between c;p & cq¢r 1s highly nontrivial.




Appendix

® Universal Asymptotic Formula

® AdS/BCFT
@® Calculation of EE in ICFT
® Universal Bound on c.¢
»  Holographic proof
*  Entropic proof
® Universal Bound on c¢;p
*  Holographic proof
*  Check 1in non-holographic CFTs
® Higher dimensional generalization



Core 1IN higher d

Question:

What is a higher-dimensional analog of c.¢?

Assume d is even (few modifications in odd d)

General form of EE

I d-2 I d—4 I
SA =S4-2 (E) +Sd_4 (E) +"'+C10gE+SO

Candidate




Core 1IN higher d

Setup:
CFT on R x S%7! with interface along equator R x §472

Holographic ICFT:

ds? = eZA(’”)dsf\de + dr?

Holographic EE:
a_y 2
SA — ‘“+(—1)2 4Ceff10gg+50

where

d
T2 e (d-1)A(rmin)

Ceff = —
e F(%) 47TGIE,d D




Core 1IN higher d

Proposition 1
d —
nz (4'(e)) "
Cr =
- F(E) 4 GLAY

2
d _
nz (A'(—)) °
Cp =
R l"(%) 477G1$/d_1)

Proposition 2

NEC holds in any dimension

= e_ZA(Tmin) > A’(ioo)z

(Result) Universal upper bound in any dimension

Ceff < min(cy, cg)




Higher-dimension

 Higher dimensional analog of universal formula
_ Cr, + Ceff L

Sa = 6 log— «/ True

e

 Higher dimensional analog of

Ceff < Min(cy, cg) Vv  True

Our candidate for cq¢ satisfies all higher dimensional
analogs of universal formulae.

=higher dimensional analog of c.¢ 1s defined by

a4 2
Sp=-+(—1)2 "4y logg + s




Core 1IN 0dd d

Setup:
CFT on R x S%7! with interface along equator R x §472

Holographic ICFT:

ds? = eZA(’”)dsf\de + dr?

Holographic EE:

Not log term

d-1
Sy=+ (=1) 2 27 coie

where Same as even d

7'[% e (d—=1)A(Tmin)

Ceff = —
: F(%) 47TGIE,d D
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