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Why Interface?

CFT𝐿 CFT𝑅

interface

Interface glues two (possibly different) theories

including boundary & defect

⇒predict the effect of boundaries in real systems

CFT trivial

boundary

Example
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Why Interface?

CFT𝐿 CFT𝑅

interface

Interface glues two (possibly different) theories.

viewed as an operator acting on Hilbert space

⇒Non-local probe, such as Entanglement Entropy

CFT𝐿

CFT𝑅

operator
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Why Interface?

(Generalized) Ward-Takahashi identity

⇒new selection rule for correlation functions

𝜖𝜖𝜖 ⋯ = 0           if # of 𝜖 is odd

developed as Generalized symmetry 

=
𝜖 𝜖

𝜖

𝜖 𝜖

𝜖
𝒩

𝜖 𝜖

𝜖
=

1

2
−

[Gaiotto]



6

Holographic dual of ICFT involves brane

⇒ holographic approach to quantum gravity

• understanding braneworld holography

• providing tractable model of QG (with brane)

    (i.e., island model)

interface

=

AdS/CFT

Why Interface?

brane

AdS
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Difficulty in Interface

• Interface breaks a symmetry

⇒ hard to calculate correlation functions

⇒ classification is not well-understood at all

• Fusion is ill-defined

⇒ algebraic approach is also hard

fusion

Casimir

divergence

Remark:

Topological interface is an exception, since it has no 

Casimir divergence.

⇒ nice structure, i.e., fusion category
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Difficulty in Interface

• Interface breaks a symmetry

⇒ hard to calculate correlation functions

⇒ classification is not well-understood at all

• Fusion is ill-defined

⇒ algebraic approach is also hard

• Solvable concrete examples are very limited

    ⇒ hard to conjecture universal formula from concrete examples

fusion

Casimir

divergence
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Introduction

Summary of current situation:

Current studies of interfaces really utilize some 

specialized properties, such as topological, free, etc.

Our goal in this talk:

Find model-independent methods for studying interfaces
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Introduction

Summary of current situation:

Current studies of interfaces really utilize some 

specialized properties, such as topological, free, etc.

Our goal in this talk:

Find model-independent methods for studying interfaces

Goal in the future

• New classification of interfaces

• New analytic tools?
Topological ⇒generalized symmetry
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Introduction

Summary of current situation:

Current studies of interfaces really utilize some 

specialized properties, such as topological, free, etc.

Our goal in this talk:

Find model-independent methods for studying interfaces

Goal in the future

• New classification of interfaces

• New analytic tools?
Topological ⇒generalized symmetry

Non-topological ⇒ “generalized” generalized symmetry
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Conformal Interface

CFT𝐿 CFT𝑅

interface ℐ

Assumption

No absorption & emission of energy on ℐ:

𝑇(𝐿) − ത𝑇 𝐿 = 𝑇 𝑅 − ത𝑇 𝑅 on ℐ
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CFT𝐿

CFT𝑅

Assumption(Operator formalism)

Map from states in CFT𝐿 to states in CFT𝑅,

satisfying

𝐿𝑛
𝐿

− ത𝐿−𝑛
𝐿

ℐ = ℐ 𝐿𝑛
𝑅

− ത𝐿−𝑛
𝑅

interface ℐ

Conformal Interface
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ICFT → BCFT

Alternative Interpretation of Assumption

𝑇(𝐿) − ത𝑇 𝐿 = 𝑇 𝑅 − ത𝑇 𝑅

⇕

𝑇(𝐿) + ത𝑇 𝑅 = ത𝑇 𝐿 + 𝑇 𝑅

Folding

CFT𝐿

boundaryinterface

CFT𝑅
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ICFT → BCFT

Alternative Interpretation of Assumption

Define 𝑇tot as stress tensor of product CFT, then

𝑇tot = 𝑇tot on ℐ

⇒ Conformal boundary condition

Folding

CFT𝐿

boundaryinterface

CFT𝑅



Bootstrapping BCFT2

=
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BCFT data

𝑝 𝑝
=  න𝑑Δ𝑝 𝜌bulk Δ𝑝

𝑃 𝑃
=  න𝑑Δ𝑃 𝜌bdy Δ𝑃

boundary

𝐼

𝐽 𝐾

𝐼

𝑝
𝑖

𝑗 𝑘

・Spectrum

・OPE coef.

𝐶𝑖𝑗𝑘 𝐶𝐼𝐽𝐾 𝐶𝑝𝐼
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BCFT data

boundary

𝑖
𝑃

𝑄

𝑖
𝑃

𝑃

𝑄

𝑄
=  න𝑑Δ𝑃 𝜌bdy Δ𝑃  න𝑑Δ𝑄 𝜌bdy Δ𝑄

Example:

𝐶𝑖𝑃

𝐶𝑃𝑄𝑄

With 𝜌bulk Δ , 𝜌bdy Δ , 𝐶𝑖𝑗𝑘 , 𝐶𝑖𝐽, 𝐶𝐼𝐽𝐾 ,

any correlation function can be calculated

Solve CFT  =  Determine 𝜌bulk Δ , 𝜌bdy Δ , 𝐶𝑖𝑗𝑘, 𝐶𝑖𝐽, 𝐶𝐼𝐽𝐾

But how?
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Conformal Bootstrap

Idea

Equation between two different cuts

𝛽
2𝜋

Tr e−𝛽𝐻

=

clearly equal!

Tr e
−

2𝜋 2

𝛽
𝐻

Example:

so-called
modular invariance
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Conformal Bootstrap

=

How to solve?

To solve it, we generally need some assumptions, such as 

low-energy spectrum, number of irreps, etc.

But in particular region, one can solve it without such 

assumptions,

which leads to universal formula in CFT.

Let us see this.
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Conformal Bootstrap

=

𝛽 → 0

Tr e
−

2𝜋 2

𝛽
𝐻 

≃ e
−

2𝜋 2

𝛽
 𝐸0

where 𝐸0 = −
𝑐

12

only vacuum propagates
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Conformal Bootstrap

=

𝛽 → 0

e
2𝜋 2

𝛽
𝑐

12

=

න𝑑Δ 𝜌bulk Δ 𝑒
−𝛽 Δ−

c
12 ≃

By the inverse Laplace trans., we obtain universal formula,

𝜌bulk Δ ≃ exp 2𝜋
𝑐

3
Δ

Cardy formula



23

𝜌bulk Δ ≃ exp 2𝜋
𝑐

3
Δ

Conformal Bootstrap

=

𝛽 → 0

e
2𝜋 2

𝛽
𝑐

12

=

න𝑑Δ 𝜌bulk Δ 𝑒
−𝛽 Δ−

c
12 ≃

① different cuts

② vacuum approximation

③ inverse Laplace transformation
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Conformal Bootstrap

Algorithm to obtain universal formula

① equation between two cuts

② vacuum approximation

③ inverse Laplace transformation
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Conformal Bootstrap

Algorithm to obtain universal formula

① equation between two cuts

② vacuum approximation

③ inverse Laplace transformation

This algorithm can be generalized

𝑖

𝐼 𝐼 𝐼 𝐼

𝑖 𝑖 𝑖

𝐼

𝐼

𝐽

𝐼

𝐽

𝐼

𝐽

𝐼

𝐽

𝐼

𝐼 𝐼
𝐼 𝐼

=

=

=

=

=

=

=
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Conformal Bootstrap

Algorithm to obtain universal formula

① equation between two cuts

② vacuum approximation

③ inverse Laplace transformation

This algorithm can be generalized

Result

In the limit max ℎ𝑖 , ℎ𝐼 ≫ 𝑐,
𝐶𝑖𝑗𝑘 , 𝐶𝑖𝐽 , 𝐶𝐼𝐽𝐾 are asymptotically universal

which is generalization of Cardy formula

[YK], [Numasawa-Tsiares] 
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Application

Implication from universal formula

Self-interacted brane is impossible

When attempting to create self-interaction,

black hole is always formed

[YK], [YK, Wei] 

interface brane

=



Bootstrapping BCFT𝑑 
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Modular bootstrap in higher 𝑑?

In 2𝑑, the modular invariance gives us the universality,

𝑍 𝛽 = 𝑍
2𝜋 2

𝛽
≃ 𝑒

2𝜋 2

𝛽
𝑐

12

On the other hand, 𝕊𝑑−1 × 𝕊1 dues not have such invariance.

⇒ No similar universality ?

𝕊1 × 𝕊1 𝕊𝑑−1 × 𝕊1

modular invariance
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Modular bootstrap in higher 𝑑?

In 2𝑑, the modular invariance gives us the universality,

𝑍 𝛽 = 𝑍
2𝜋 2

𝛽
≃ 𝑒

2𝜋 2

𝛽
𝑐

12

On the other hand, 𝕊𝑑−1 × 𝕊1 dues not have such invariance.

⇒ No similar universality ?

Hint

One can still find a low-temperature description by 

Thermal CFT𝑑

on Σ𝑑−1 × 𝕊𝛽
1

Effective gapped QFT on 

Σ𝑑−1 with 𝑚𝑔𝑎𝑝 ∝ 1/𝛽≃
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Modular bootstrap in higher 𝑑?

KK ansatz for background metric on Σ𝑑−1 × 𝕊𝛽
1 ,

𝑑𝑠2 = 𝑔𝑖𝑗 Ԧ𝑥 𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑒2𝜙( Ԧ𝑥)𝑑𝜏2

 = 𝑒2𝜙( Ԧ𝑥) ො𝑔𝑖𝑗 Ԧ𝑥 𝑑𝑥𝑖𝑑𝑥𝑗 + 𝑑𝜏2

ො𝑔 ≔ 𝑒−2𝜙, and 𝑒−2𝜙 = 𝛽−2

In the 𝛽 → 0 limit, gapped ⇒ depend only on background fields

𝑍 Σ𝑑−1 × 𝕊𝛽
1  → 𝑒−𝑆eff[ ො𝑔]

Weyl invariance constraints the form,

𝑆eff ො𝑔 = න𝑑𝑑−1𝑥 ො𝑔 −𝑓 + 𝑐1
෠𝑅 + ⋯

Thermal CFT𝑑

on Σ𝑑−1 × 𝕊𝛽
1

Effective gapped QFT on 

Σ𝑑−1 with 𝑚𝑔𝑎𝑝 ∝ 1/𝛽≃

Weyl inv.

𝑍 𝑔, 𝜙 = 𝑍[ ො𝑔, 0]
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Modular bootstrap in higher 𝑑?

Higher derivative terms are suppressed

𝑆eff ො𝑔 = න𝑑𝑑−1𝑥 ො𝑔 −𝑓 + 𝑐1
෠𝑅 + ⋯

Note: ො𝑔 = 𝑒−2𝜙𝑔, and 𝑒−2𝜙 = 𝛽−2

⇒ only a few parameters 𝑓, 𝑐1, ⋯ characterize 𝑍 Σ𝑑−1 × 𝕊𝛽
1  

     Note: Wilson coefficients are independent of background metric

⇒ universality 

Thermal CFT𝑑

on Σ𝑑−1 × 𝕊𝛽
1

Effective gapped QFT on 

Σ𝑑−1 with 𝑚𝑔𝑎𝑝 ∝ 1/𝛽≃

෠𝑅 is dimensionless.

If making mass dimension explicit,
෠𝑅 = 𝛽2𝑅

⇒ suppressed by 𝛽2
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Modular bootstrap in higher 𝑑?

Higher derivative terms are suppressed

𝑆eff ො𝑔 = න𝑑𝑑−1𝑥 ො𝑔 −𝑓 + 𝑐1
෠𝑅 + ⋯

Note: ො𝑔 = 𝑒−2𝜙𝑔, and 𝑒−2𝜙 = 𝛽−2

⇒ only a few parameters 𝑓, 𝑐1, ⋯ characterize 𝑍 Σ𝑑−1 × 𝕊𝛽
1  

     Note: Wilson coefficients are independent of background metric

⇒ universality 

Thermal CFT𝑑

on Σ𝑑−1 × 𝕊𝛽
1

Effective gapped QFT on 

Σ𝑑−1 with 𝑚𝑔𝑎𝑝 ∝ 1/𝛽≃
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Modular bootstrap in higher 𝑑?

Alternative derivation of Cardy formula

𝑆eff ො𝑔 ≃ −
𝑓

𝛽𝑑−1
vol Σ𝑑−1

In 2𝑑,

𝑓 =
2𝜋𝑐

12
, 𝑐1, ⋯ = 0

Thus, we obtain

න𝑑Δ 𝜌 Δ  𝑒−𝛽Δ ≃ 𝑒−𝑆eff ො𝑔
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Modular bootstrap in higher 𝑑?

Alternative derivation of Cardy formula

𝑆eff ො𝑔 ≃ −
𝑓

𝛽𝑑−1
vol Σ𝑑−1

In 2𝑑,

𝑓 =
2𝜋𝑐

12
, 𝑐1, ⋯ = 0

Thus, we obtain

න𝑑Δ 𝜌 Δ  𝑒−𝛽Δ ≃ exp
2𝜋

𝛽

2𝜋c

12

By the inverse Laplace transformation,

log 𝜌 Δ ≃ 2𝜋
𝑐

3
Δ
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Cardy formula in CFT𝑑

Consider CFT𝑑 on 𝕊𝑑−1 × 𝕊𝛽
1 , we have

𝑆eff ො𝑔 ≃ −
𝑓

𝛽𝑑−1
vol 𝕊𝑑−1

EFT approach remains valid even in higher dimensions,

න𝑑Δ 𝜌 Δ  𝑒−𝛽Δ ≃ 𝑒−𝑆eff ො𝑔

By the inverse Laplace transformation,

log 𝜌 Δ ≃ 𝑓
1
𝑑

𝑑

𝑑 − 1
𝑑 − 1 vol 𝕊𝑑−1

1
𝑑

 Δ
𝑑−1

𝑑

Note: The sub-leading term is suppressed by Δ−
2

𝑑,  

          and its coefficient is determined by 𝑓 and 𝑐1. 

[Benjamin, Lee, Ooguri, Simmons-Duffin]
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Cardy formula in BCFT𝑑

Two ways to place boundaries on 𝕊𝑑−1 × 𝕊𝛽
1

[Diatlyk, Khanchandani, Popov, Wang] [Kusuki, Ooguri, Pal]

𝕊𝑑−1 with 𝕊𝑑−2 boundarysandwiched by 𝕊𝑑−1 boundaries
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Cardy formula in BCFT𝑑
[Kusuki, Ooguri, Pal]

Consider BCFT𝑑 on 𝕊+
𝑑−1 × 𝕊𝛽

1

𝑆eff ො𝑔 = න𝑑𝑑−1𝑥 ො𝑔 −𝑓 + 𝑐1
෠𝑅 + ⋯

 + න𝑑𝑑−2𝑥 ො𝜎 −𝑔 + 𝑏1
෡𝐾 + ⋯

𝜎: induced metric on the boundary

𝐾: trace of extrinsic curvature 𝐾𝑎𝑏 ≔ ∇𝑎𝑛𝑏

𝑛: unit vector normal to the boundary

boundary contribution
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Cardy formula in BCFT𝑑

𝛽 expansion of 𝑆eff ො𝑔  includes

• Bulk leading:                      −𝑓
vol 𝕊𝑑−1

2𝛽𝑑−1

• Bulk sub-leading:               𝑐1
𝑑−2 (𝑑−1)vol 𝕊𝑑−1

2𝛽𝑑−3

• Boundary leading:               −𝑔
vol 𝕊𝑑−2

𝛽𝑑−2

⇒ Next leading comes from the boundary leading

related to 𝑔-function in 2𝑑

[Kusuki, Ooguri, Pal]
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Cardy formula in BCFT𝑑

Cardy Formula in BCFT𝑑

log 𝜌 Δ ≃ 𝑓
1
𝑑

𝑑

𝑑 − 1

𝑑 − 1 vol 𝕊𝑑−1

2

1
𝑑

 Δ
𝑑−1

𝑑

 +𝑓
2−𝑑

𝑑 𝑔 vol 𝕊𝑑−2
𝑑 − 1 vol 𝕊𝑑−1

2

2−𝑑
𝑑

Δ
𝑑−2

𝑑

 +𝑂 Δ
𝑑−3

𝑑

[Kusuki, Ooguri, Pal]

boundary contribution



AdS/ICFT

Interface
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ICFT = BCFT

BCFT picture obscures unique properties of ICFT

• Energy transmission from L to R

• Entanglement between L & R

which are encoded in BCFT but make sense only in ICFT

?

=
?
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Transmission Coefficient

𝐸𝑖𝑛

𝐸𝑡𝑟𝑎𝑛𝑠𝐸𝑟𝑒𝑓

𝒯 ≔
𝐸𝑡𝑟𝑎𝑛𝑠

𝐸𝑖𝑛

[Quella, Runkel, Watts]

Transmission coef. can be extracted by

𝒯 =
𝑐𝐿𝑅

𝑐𝐿/𝑅
, 𝑇𝐿 𝑧 𝑇𝑅 𝑤 =

𝑐𝐿𝑅

2 𝑧 − 𝑤 4

[Meineri, Penedones, Rousset]
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Transmission Coefficient

𝒯 = 1

[Quella, Runkel, Watts]

𝒯 = 0

topological boundary

max min

Two trivial cases
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Entanglement

Definition

𝑆𝐴
(𝑛)

≔
1

1 − 𝑛
log Tr 𝜌𝐴

𝑛

𝜌𝐴 ≔  Tr ҧ𝐴 𝜌  

• Entanglement Entropy ≔ lim
𝑛→1

 𝑆𝐴
(𝑛)

• Measuring the amount of entanglement (# of EPR pairs)

entanglement

𝐴ҧ𝐴
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Entanglement

Important quantity in ICFT

Amount of entanglement (# of EPR pairs) across interface

𝑆𝐴 ≡ −tr𝜌𝐴log 𝜌𝐴 =
𝑐eff

3
log

𝐴

𝜖

Alternative interpretation

𝒯𝐿/𝑅
info =

transmitted information

incident information
=

𝑐eff

𝑐𝐿/𝑅

[Wen, Wang, Ryu]

[Sakai, Satoh]

𝐴 𝐵

Interface

CFT𝐿 CFT𝑅
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𝑐eff as Information Transmission

A

EPR pair

time

EE under global quench

𝑆𝐴 = # 𝑐 𝑡

A EE under global quench

𝑆𝐴 = # 𝑐eff 𝑡

partially transmit

interface

⇒
𝑐eff

𝑐
 = information transmission

time

[Wen, Wang, Ryu], [Karch, YK, Ooguri, Sun, Wang]
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Issue

BCFT picture obscures unique properties of ICFT

• 𝒯 : Energy transmission from L to R

• 𝑐eff : Entanglement between L & R

which are encoded in BCFT but make sense only in ICFT

Problem 

Hard to calculate both 𝒯 and 𝑐eff

Only computed in a few examples by model-specific 

methods

⇒ How can we overcome this problem?
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AdS/ICFT

𝑟

Interface

𝑟

AdS3

black dotted line = AdS2 slice

CFT2

𝑑𝑠2 = cosh 𝑟
𝑑𝑥2 − 𝑑𝑡2

𝑥2 + 𝑑𝑟2

𝑑𝑠2 = 𝑒2𝐴(𝑟)
𝑑𝑥2 − 𝑑𝑡2

𝑥2 + 𝑑𝑟2

CFT𝑅CFT𝐿

each AdS2 slice has a different 

warp factor 𝐴(𝑟) 

AdS/CFT

AdS/ICFT

Details of interface 

is encoded in 𝐴(𝑟)
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AdS/ICFT

𝑟

Interface

𝑑𝑠2 = 𝑒2𝐴(𝑟)
𝑑𝑥2 − 𝑑𝑡2

𝑥2 + 𝑑𝑟2

CFT𝑅CFT𝐿

each AdS2 slice has a different 

warp factor 𝐴(𝑟) 

AdS/ICFT

Details of interface 

is encoded in 𝐴(𝑟)

• AdS:             𝑒2𝐴 𝑟 = cosh 𝑟

• Janus:          𝑒2𝐴(𝑟) =
1

2
1 + 1 − 2𝛾2 cosh 2𝑟

Example:

Generic interface is obtained from generic 𝐴(𝑟)

⇒ universal information of interface is encoded as

    universal property of 𝐴(𝑟)
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AdS/ICFT

𝑟

Interface

𝑑𝑠2 = 𝑒2𝐴(𝑟)
𝑑𝑥2 − 𝑑𝑡2

𝑥2 + 𝑑𝑟2

ҧ𝐴𝐴

AdS/ICFT

Gravity dual of EE (Ryu-Takayanagi formula)

𝑆𝐴 = min
 Γ𝐴

𝜕Γ𝐴=𝜕𝐴

Area Γ𝐴

4𝐺𝑁

still works in AdS/ICFT

Γ𝐴
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Universal Bounds

• Holographic 𝑐eff

• Holographic 𝑐𝐿𝑅

Point: Both are determined by 𝐴(𝑟)

[Ryu, Takayanagi]

[Bachas, Baiguera, Chapman, Policastro, Schwartzman]

• Generalized holographic 𝑐 theorem (NEC)

𝐴′′ 𝑟 ≤ 𝑒−2𝐴(𝑟)

⇒ upper bound on 𝑐eff

• Comparison between holographic 𝑐eff & 𝑐𝐿𝑅

⇒ upper bound on 𝑐𝐿𝑅

[Karch, YK, Ooguri, Sun, Wang ’23] 

[Karch, YK, Ooguri, Sun, Wang ’24] 
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Universal Bounds

• Holographic 𝑐eff

• Holographic 𝑐𝐿𝑅

Point: Both are determined by 𝐴(𝑟)

[Ryu, Takayanagi]

[Bachas, Baiguera, Chapman, Policastro, Schwartzman]

Result

0 ≤ 𝑐𝐿𝑅 ≤ 𝑐eff ≤ min(𝑐𝐿 , 𝑐𝑅)

① The amount of energy transmission can never exceed the 

amount of information transmission

② Any interface decreases entanglement

① ②

[Karch, YK, Ooguri, Sun, Wang]× 2 
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Example: free boson

𝑐𝐿𝑅 & 𝑐eff are parametrized by one parameter 𝑠 ∈ 0,1 ;

𝑐𝐿𝑅 = 𝑠2

𝑐eff =
1

2
+ 𝑠 +

3

𝜋2
𝑠 + 1 log 𝑠 + 1 log 𝑠 + 𝑠 − 1 Li2 1 − 𝑠 + 𝑠 + 1 Li2 −𝑠

𝑐𝐿𝑅 ≤ 𝑐eff

𝑐eff ≤ min 𝑐𝐿, 𝑐𝑅
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Example: free fermion

𝑐𝐿𝑅 ≤ 𝑐eff

𝑐eff ≤ min 𝑐𝐿, 𝑐𝑅

𝑐𝐿𝑅 & 𝑐eff are parametrized by one parameter 𝑠 ∈ (0,1);

𝑐𝐿𝑅 =
𝑠2

2

𝑐eff =
𝑠 − 1

2
−

3

𝜋2
𝑠 + 1 log 𝑠 + 1 log 𝑠 + 𝑠 − 1 Li2 1 − 𝑠 + 𝑠 + 1 Li2 −𝑠
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Example: defect perturbation

Perturbation by defect field 𝜙

𝛿𝑆 = 𝜆 න
𝛾

𝑑𝑤 𝜙(𝑤)

It has been shown in [Brehm],

𝑐eff = 𝑐 𝒯 +
1

4
(1 − 𝒯) + O(𝜆2)

This is consistent with 𝜆 expansion of 𝑐eff in free fermion.

Since 𝑐𝐿𝑅 = 𝑐𝒯 and 0 ≤ 𝒯 ≤ 1,

𝑐𝐿𝑅 ≤ 𝑐eff

𝛿𝑆 = 𝜆 න
𝛾

𝑑𝑤 𝜙(𝑤)

Setup: general CFT

CFT𝐿 = CFT𝑅 



Discussion
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Summary

Our Goal

Model-independent methods in ICFT

Conformal Bootstrap

Equation between two cuts ⇒ Asymptotic formula

This approach can be applied to any CFT

Resulting universal formula has important implications for 

quantum gravity

=
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Summary

Our Goal

Model-independent methods in ICFT

AdS/CFT

Known constraints on gravity ⇒ Nontrivial constraints on CFT

Example:

(Energy transmission) ≤ (Information transmission)
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Other topics in ICFT

[Furuta, YK, Onagi]• New model-independent method

CFT𝐿 CFT𝑅

Phantom current

hidden in  CFTL ⊗ CFTR

Focusing on the hidden structure—the phantom current—

shared by many interfaces enables a model-independent

computation of the transmission coefficient.

• Parity action on interface [Harada, Kaidi, YK, Liu]

𝑦𝑎 ෍

𝑥,𝑦

෍

𝜇,𝜌

෍

𝜈,𝜎

𝑃𝑏𝑎
𝑥

𝜌𝜇 𝑃𝑥𝑎
𝑦

𝜈𝜎
𝐹𝑎𝑏𝑎

𝑦

𝑥𝜎𝜌,𝑥𝜇𝜈=𝑏
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Other topics in ICFT

[Komatsu, YK, Meineri, Ooguri]

• Conformal manifold implies exactly marginal operator?

CFT𝜆+𝛿𝜆 CFT𝜆

(𝑇𝐿 − 𝑇𝑅)/𝛿𝜆

CFT𝜆

𝜙

𝛿𝜆 → 0

The interface between deformed and undeformed CFT is useful

to study CFT deformation.

One can show that a conformal manifold implies the existence of 

exactly marginal operators.

Thank you
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 Universal Asymptotic Formula

 AdS/BCFT

 Calculation of EE in ICFT

 Universal Bound on 𝑐eff

• Holographic proof

• Entropic proof

 Universal Bound on 𝑐𝐿𝑅

• Holographic proof

• Check in non-holographic CFTs

 Higher dimensional generalization
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Universal Asymptotic Formula

𝑖 𝑖
=𝑝

boundary

𝑖 𝑖

𝑃

නdℎ𝑝  𝜌bulk ℎ𝑝, ℎ𝑝 𝐶𝑖𝑖𝑝𝐶𝑝0ℱ𝑖𝑖
𝑖𝑖 𝑝 1 − 𝑧 = නdℎ𝑃  𝜌bdy ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

[YK], [Numasawa-Tsiares] 

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 ≃ නdℎ𝑃  𝜌𝑏𝑑𝑦 ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

1 − 𝑧 ≪ 1
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Universal Asymptotic Formula

𝑖 𝑖
=𝑝

boundary

𝑖 𝑖

𝑃

නdℎ𝑝  𝜌bulk ℎ𝑝, ℎ𝑝 𝐶𝑖𝑖𝑝𝐶𝑝0ℱ𝑖𝑖
𝑖𝑖 𝑝 1 − 𝑧 = නdℎ𝑃  𝜌bdy ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

[YK], [Numasawa-Tsiares] 

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 ≃ නdℎ𝑃  𝜌𝑏𝑑𝑦 ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

1 − 𝑧 ≪ 1

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 = නdℎ𝑃 𝐹0𝑃

𝑖 𝑖
𝑖 𝑖

ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

Fusion 

transformation

theory-independent
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Universal Asymptotic Formula

𝑖 𝑖
=𝑝

boundary

𝑖 𝑖

𝑃

නdℎ𝑝  𝜌bulk ℎ𝑝, ℎ𝑝 𝐶𝑖𝑖𝑝𝐶𝑝0ℱ𝑖𝑖
𝑖𝑖 𝑝 1 − 𝑧 = නdℎ𝑃  𝜌bdy ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

[YK], [Numasawa-Tsiares] 

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 ≃ නdℎ𝑃  𝜌𝑏𝑑𝑦 ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

1 − 𝑧 ≪ 1

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 = නdℎ𝑃 𝐹0𝑃

𝑖 𝑖
𝑖 𝑖

ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

Fusion 

transformation

≃

theory-independent
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Universal Asymptotic Formula

𝑖 𝑖
=𝑝

boundary

𝑖 𝑖

𝑃

නdℎ𝑝  𝜌bulk ℎ𝑝, ℎ𝑝 𝐶𝑖𝑖𝑝𝐶𝑝0ℱ𝑖𝑖
𝑖𝑖 𝑝 1 − 𝑧 = නdℎ𝑃  𝜌bdy ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

[YK], [Numasawa-Tsiares] 

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 ≃ නdℎ𝑃  𝜌𝑏𝑑𝑦 ℎ𝑃 𝐶𝑖𝑃

2ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

𝟏 − 𝒛 ≪ 𝟏

ℱ𝑖𝑖
𝑖𝑖 0 1 − 𝑧 = නdℎ𝑃 𝐹0𝑃

𝑖 𝑖
𝑖 𝑖

ℱ𝑖𝑖
𝑖𝑖 𝑃 𝑧

Fusion 

transformation

≃

theory-independent

ℎ𝑃 ≫ 𝑐
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Universal Asymptotic Formula
[YK], [Numasawa-Tsiares] 

Result

𝐶𝑖𝑗𝑘 , 𝐶𝑖𝐽 , 𝐶𝐼𝐽𝐾 = fusion matrix, if max ℎ𝑖 , {ℎ𝐼} ≫ c 

Note: fusion matrix does not depend on theory

𝑖

𝐼 𝐼 𝐼 𝐼

𝑖 𝑖 𝑖

𝐼

𝐼

𝐽

𝐼

𝐽

𝐼

𝐽

𝐼

𝐽

𝐼

𝐼 𝐼
𝐼 𝐼

=

=

=

=

=

=

=
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Application

AdS/BCFT

𝐼𝑔𝑟𝑎𝑣 = −
1

16𝜋𝐺𝑁
න

𝑀

𝑑3𝑥 𝑔 𝑅 − 2Λ + ෍

𝑖

𝑚𝑖 ∫ 𝑑𝑙𝑖 −
1

8𝜋𝐺𝑁
න

𝑄

𝑑2𝑥 ℎ 𝐾 − 𝑇

massive particle ETW braneE-H action

Asymptotic bdy = BCFT2

bulk

direction

AdS3

[YK], [YK, Wei] 
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Application

AdS/BCFT

𝐼𝑔𝑟𝑎𝑣 = −
1

16𝜋𝐺𝑁
න

𝑀

𝑑3𝑥 𝑔 𝑅 − 2Λ + ෍

𝑖

𝑚𝑖 ∫ 𝑑𝑙𝑖 −
1

8𝜋𝐺𝑁
න

𝑄

𝑑2𝑥 ℎ 𝐾 − 𝑇

massive particle ETW braneE-H action

Asymptotic bdy = BCFT2

bulk

direction

AdS3
Extra assumption

𝐶𝑝𝕀 = 𝛿𝑝𝕀

⇒ extension of 

validity regime of 

asymptotic formula

[YK], [YK, Wei] 
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 Universal Asymptotic Formula

 AdS/BCFT

 Calculation of EE in ICFT

 Universal Bound on 𝑐eff

• Holographic proof

• Entropic proof

 Universal Bound on 𝑐𝐿𝑅

• Holographic proof

• Check in non-holographic CFTs

 Higher dimensional generalization
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Calculation of EE

𝐴Interface

Our setup

Interface

𝐴
𝑥

𝐿

4
−

𝐿

4

CFT1 CFT2
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Calculation of EE

Our setup

2 log
𝐿

𝜋𝜖

2𝜋

Interface

Conformal map

𝑧 →  log 𝑧

𝐴

Interface

𝐴
𝑥

𝐿

4
−

𝐿

4

CFT1 CFT2
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Calculation of EE

2 log
𝐿

𝜋𝜖

2𝜋

Interface

𝐴

Replica trick

𝑆𝐴 = lim
𝑛→1

𝑆𝐴
(𝑛)

,          𝑆𝐴
(𝑛)

≡
1

1−𝑛
log

𝑍𝑛

𝑍1
𝑛

where the replica partition function is

𝑍𝑛 = tr 𝑒−
𝛽

2
𝐻(1)

 ℐ 𝑒−
𝛽

2
𝐻(2)

ℐ†
𝑛

,     𝛽 ≡
𝜋2

log
𝐿

𝜋𝜖

,     𝐻(𝑖) ≡ 𝐿(𝑖) −
𝑐𝑖

24
 

Interface

𝐴
𝑥

𝐿

4
−

𝐿

4

CFT1 CFT2
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Calculation of EE

2 log
𝐿

𝜋𝜖

2𝜋

Interface

𝐴

Replica trick

𝑆𝐴 = lim
𝑛→1

𝑆𝐴
(𝑛)

,          𝑆𝐴
(𝑛)

≡
1

1−𝑛
log

𝑍𝑛

𝑍1
𝑛

where the replica partition function is

𝑍𝑛 = tr 𝑒−
𝛽

2
𝐻(1)

 ℐ 𝑒−
𝛽

2
𝐻(2)

ℐ†
𝑛

,     𝛽 ≡
𝜋2

log
𝐿

𝜋𝜖

,     𝐻(𝑖) ≡ 𝐿(𝑖) −
𝑐𝑖

24
 

Interface

𝐴
𝑥

𝐿

4
−

𝐿

4

CFT1 CFT2

Hamiltonian in BCFT is 

conventionally defined on [0, 𝜋],

𝐻conv
𝑖

= 𝜋 𝐿 𝑖 −
𝑐𝑖

24
But for convenance, we use

𝛽𝐻(𝑖) =
2𝜋

2log
𝐿

𝜋𝜖

𝐻conv
𝑖
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Calculation of EE
Open-closed duality

𝑍𝑛 = tr 𝑒−
𝛽
2𝐻(1)

 ℐ 𝑒−
𝛽
2𝐻(2)

ℐ†

𝑛

= ⟨𝐵|𝑒
−

2𝜋 2

2𝑛𝛽
𝐻𝑛

 |𝐵⟩

where 𝐻𝑛 is the Hamiltonian of the theory with 2𝑛 interfaces.

(𝐵 is some boundary condition imposed on entangling surface.)

In the high-temperature limit 𝛽 =
𝜋2

log
𝐿

𝜋𝜖

 
𝜖→0

 0,

only the vacuum (≡ Δ𝑛
0 )propagates through the cylinder,

𝑍𝑛 ∼ 𝑒
−

2𝜋 2

2𝑛𝛽
Δ𝑛

0

Thus, we have

𝑆𝐴
(𝑛)

=
1

1 − 𝑛
log

𝑍𝑛

𝑍1
𝑛

=
2

1 − 𝑛

Δ𝑛
0

𝑛
− 𝑛Δ1

0 log
𝑙

𝜖
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Calculation of EE
Open-closed duality

𝑍𝑛 = tr 𝑒−
𝛽
2𝐻(1)

 ℐ 𝑒−
𝛽
2𝐻(2)

ℐ†

𝑛

= ⟨𝐵|𝑒
−

2𝜋 2

2𝑛𝛽
𝐻𝑛

 |𝐵⟩

where 𝐻𝑛 is the Hamiltonian of the theory with 2𝑛 interfaces.

(Def) Effective central charge

𝑐eff = lim
𝑛→1

12𝑛

1 − 𝑛2
𝑛Δ1

0 −
Δ𝑛

0

𝑛
,

where Δ𝑛
0 is the vacuum energy in the 2𝑛-interface Hilbert 

space.

⇒Is this useful to give insights into general interfaces?

            No nice property is known for Δ𝑛
0 .

Just a formal expression

No simple formula is known
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EE in various setups

(i) one-side (ii) symmetric (iii) asymmetric

𝐴Interface 𝐴 𝐴

Interface

𝐴
𝑥

𝐴
𝑥

𝐴
𝑥

𝐿

4
−

𝐿

4
0 𝐿

4
−

𝐿

4

𝐿

4
−

𝐿

4

𝐿

2

CFT1 CFT2 CFT2 CFT2CFT1 CFT1
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EE in various setups

(i) one-side (ii) symmetric (iii) asymmetric

𝑆𝐴 =
𝑐eff

3
log

𝐿

𝜋𝜖
𝑆𝐴 =

𝑐1 + 𝑐2

6
log

𝐿

𝜋𝜖
𝑆𝐴 = ?

Interface

𝐴
𝑥

𝐴
𝑥

𝐴
𝑥

𝐿

4
−

𝐿

4
0 𝐿

4
−

𝐿

4

𝐿

4
−

𝐿

4

𝐿

2

CFT1 CFT2 CFT2 CFT2CFT1 CFT1
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EE in various setups

Interface

𝐴
𝑥

𝐴
𝑥

(i) one-side (ii) symmetric (iii) asymmetric

𝐴
𝑥

𝐿

4
−

𝐿

4
0 𝐿

4
−

𝐿

4

𝐿

4
−

𝐿

4

𝐿

2

CFT1 CFT2 CFT2 CFT2CFT1 CFT1

𝑆𝐴 =
𝑐eff

3
log

𝐿

𝜋𝜖
𝑆𝐴 =

𝑐1 + 𝑐2

6
log

𝐿

𝜋𝜖
𝑆𝐴 =

𝑐1 + 𝑐eff

6
log

𝐿

𝜋𝜖

Conjectured from 

the gravity side

[Karch, Luo, Sun] 

& [Karch, Wang] 
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EE in one-side setup

Interface

𝐴
𝑥

𝐿

4
−

𝐿

4

CFT1 CFT2

Our setup

2 log
𝐿

𝜋𝜖

2𝜋

Interface

Conformal map

𝑧 →  log 𝑧

𝐴
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EE in asymmetric setup

Our setup

Conformal map

𝑧 →  log 𝑧

log
𝐿

𝜋𝜖
log

𝐿

𝜋𝜖

2𝜋𝑛
𝐴

𝑥
𝐿

4
−

𝐿

4

𝐿

2

CFT2CFT1
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EE in asymmetric setup

2𝜋𝑛

Interface

log
𝐿

𝜋𝜖
log

𝐿

𝜋𝜖

2𝜋𝑛

Interpretation

𝐻𝑛
𝐻(1)

Hamiltonian

(Result)

𝑍𝑛 = 𝐵 𝑒−
1
𝑛log

𝐿
𝜋𝜖𝐻𝑛  ℐ 𝑒−

1
𝑛log

𝐿
𝜋𝜖𝐻(1)

|𝐵⟩

∼  𝑒−
1
𝑛log

𝐿
𝜋𝜖Δ𝑛

0

 × 𝑒−
1
𝑛log

𝐿
𝜋𝜖Δ𝐶𝐹𝑇1

0

⇒ 𝑆𝐴 =
𝑐1+𝑐eff

6
log

𝐿

𝜋𝜖 Conjecture from gravity 

is now proven!
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Holographic EE in ICFT

𝑟

AdS3

𝐴

Γ𝐴 𝑑𝑠2 = 𝑒2𝐴(𝑟)
𝑑𝑥2 − 𝑑𝑡2

𝑥2
+ 𝑑𝑟2

Relation between 𝑐 and 𝐴(𝑟):

𝑐𝐿 =
3

2𝐺𝑁

1

𝐴′(∞)

𝑐𝑅 = −
3

2𝐺𝑁

1

𝐴′ −∞

𝑐eff =
3

2𝐺𝑁
𝑒𝐴(𝑟min)

where 𝑟min is 𝑟 that leads to the minimum value of 𝐴(r).

R-T formula
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Holographic EE in ICFT

𝑟

AdS3

𝑑𝑠2 = 𝑒2𝐴(𝑟)
𝑑𝑥2 − 𝑑𝑡2

𝑥2
+ 𝑑𝑟2

Generalization of holographic 𝑐-theorem (=NEC):

𝐴′′ 𝑟 ≤ −𝑘𝑒−2𝐴(𝑟)

where 𝑘 is the sign of the constant curvature of the 2d slice.

Remark:

• 𝑘 = 0 leads to the standard 𝑐-theorem.

• 𝑘 = −1 makes the inequality weaker, so nobody is 

interested in this case. But now we make use of this! 
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Calculation of EE in ICFT
Define

𝐹 𝑟 ≡ 𝐴′ 𝑟 2 + 𝑒−2𝐴 𝑟

Then,

𝐹′ 𝑟 = 2 𝐴′′ 𝑟 − 𝑒−2𝐴 𝑟 𝐴′(𝑟)
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Proposition 1

When approaching infinity, we 

reach AdS3, i.e. 𝐴 𝑟 ≈ cosh 𝑟 .

⇒ 𝐹 ±∞ = 𝐴′ ±∞ 2

Calculation of EE in ICFT
Define

𝐹 𝑟 ≡ 𝐴′ 𝑟 2 + 𝑒−2𝐴 𝑟

Then,

𝐹′ 𝑟 = 2 𝐴′′ 𝑟 − 𝑒−2𝐴 𝑟 𝐴′(𝑟)
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Proposition 1

When approaching infinity, we 

reach AdS3, i.e. 𝐴 𝑟 ≈ cosh 𝑟 .

⇒ 𝐹 ±∞ = 𝐴′ ±∞ 2

Calculation of EE in ICFT
Define

𝐹 𝑟 ≡ 𝐴′ 𝑟 2 + 𝑒−2𝐴 𝑟

Then,

𝐹′ 𝑟 = 2 𝐴′′ 𝑟 − 𝑒−2𝐴 𝑟 𝐴′(𝑟)

Proposition 2

⇒ 𝐹′ 𝑟min = 𝐴′ 𝑟min = 0

⇒    𝐹 𝑟min = 𝑒−2𝐴(𝑟min)

𝐹 𝑟min  is the maximum of 𝐹 𝑟

<0  (∵NEC)
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Proposition 1

𝐹 ±∞ = 𝐴′ ±∞ 2

Calculation of EE in ICFT

Proposition 2

𝐹 𝑟min = 𝑒−2𝐴(𝑟min)

𝐹 𝑟min  is the maximum of 𝐹 𝑟

(Result) Universal upper bound

        𝐹 𝑟min ≥ 𝐹(±∞)

⇒ 𝑒−2𝐴(𝑟min) ≥ 𝐴′ ±∞ 2

⇒ 𝑐eff ≤ min(𝑐𝐿, 𝑐𝑅)

Proposition 3

𝑐𝐿 =
3

2𝐺𝑁

1

𝐴′(∞)

𝑐𝑅 = −
3

2𝐺𝑁

1

𝐴′ −∞

𝑐eff =
3

2𝐺𝑁
𝑒𝐴(𝑟min)

AdS version of 

holographic 𝑐-theorem
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Interface

Result

(Result) Universal upper bound

𝑐eff ≤ min(𝑐𝐿, 𝑐𝑅)

(Interpretation)

Any interface decreases entanglement.
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Result

(Result) Universal upper bound

𝑐eff ≤ min(𝑐𝐿, 𝑐𝑅)

(Interpretation)

Any interface decreases entanglement.

(Interpretation)

Any interface decreases entanglement.

Proof without AdS/CFT?

⇒ Entropic c-theorem (see details in our paper or App.)
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Upper bound from CFT

How can we show the upper bound on 𝑐eff on the CFT side?

On the gravity side, the holographic 𝒄-theorem is the key!

⇒The 𝑐-theorem may be useful on the CFT side.

𝑎

𝑏𝑐

𝑑

Key tools to derive entropic 

𝑐-theorem:

(1)  𝑆 𝑏 + 𝑆 𝑐 ≥ 𝑆 𝑎 + 𝑆(𝑑)

(2)  𝑎 𝑑 = 𝑏 𝑐
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Entropic 𝑐-theorem

Interface

𝑎

𝑏𝑐

𝑑

Key tools to derive entropic 

𝑐-theorem:

(1)  𝑆 𝑏 + 𝑆 𝑐 ≥ 𝑆 𝑎 + 𝑆(𝑑)

(2)  𝑎 𝑑 = 𝑏 𝑐

Remark:

These two still work in ICFT.

𝑆 𝑏 and 𝑆(𝑐) are evaluated using the formula (iii).
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Entropic 𝑐-theorem

Interface

𝑎

𝑏𝑐

𝑑

(Result)

  
𝑐1−𝑐eff

6
log

𝑑

𝑎
≥ 0,                 𝑑 ≫ |𝑎|

   ⇒ 𝑐eff ≤ min(𝑐1, 𝑐2) CFT version of the proof

Key tools to derive entropic 

𝑐-theorem:

(1)  𝑆 𝑏 + 𝑆 𝑐 ≥ 𝑆 𝑎 + 𝑆(𝑑)

(2)  𝑎 𝑑 = 𝑏 𝑐



Appendix

 Universal Asymptotic Formula

 AdS/BCFT

 Calculation of EE in ICFT

 Universal Bound on 𝑐eff

• Holographic proof

• Entropic proof

 Universal Bound on 𝑐𝐿𝑅

• Holographic proof

• Check in non-holographic CFTs

 Higher dimensional generalization
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Holographic 𝑐𝐿𝑅

Gravity calculation of 𝑐𝐿𝑅 
                 

𝑐𝐿𝑅 =
3

𝐺𝑁

1

𝑙𝐿
+

1

𝑙𝑅
+ 8𝜋𝐺𝑁𝜎

−1

• metric

𝑑𝑠2 = Ω 𝜃 2
𝑑𝑥2 − 𝑑𝑡2

𝑥2
+ 𝑑𝜃2 , 𝜃 ∈ (−𝜋/2, 𝜋/2)

• effective AdS radius

𝑙 𝜃 ≡
Ω 𝜃 2

Ω 𝜃 2 + Ω′ 𝜃 2

• effective brane tension (≡ 𝜎(𝜃)) 

8𝜋𝐺𝑁

𝑑𝜎

𝑑𝜃
=

Ω 𝜃 𝑙′(𝜃)

𝑙 𝜃 2 Ω 𝜃 2 − 𝑙 𝜃 2
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Simple bound

Gravity calculation of 𝑐𝐿𝑅 
                 

𝑐𝐿𝑅 =
3

𝐺𝑁

1

𝑙𝐿
+

1

𝑙𝑅
+ 8𝜋𝐺𝑁𝜎

−1

𝜎 is complicated but has simple bound;

8𝜋𝐺𝑁 න 𝑑𝜎 = න
−𝜋/2

𝜋/2

𝑑𝜃
Ω 𝜃 𝑙′(𝜃)

𝑙 𝜃 2 Ω 𝜃 2 − 𝑙 𝜃 2

≥ න
−

𝜋
2

𝜋
2

𝑑𝜃
𝑙′ 𝜃

𝑙 𝜃 2
= න

𝑑𝑙

𝑙2
≥

1

𝑙𝐿
−

1

𝑙min
+

1

𝑙min
−

1

𝑙𝑅

Thus, we obtain

𝑐𝐿𝑅 ≤
3𝑙min

2𝐺𝑁
= 𝑐eff

[Karch, YK, Ooguri, Sun, Wang] 
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Result

(Result) Universal lower bound

𝑐𝐿𝑅 ≤ 𝑐eff

(Interpretation)

The amount of energy transmission can never exceed 

the amount of information transmission.

excitation

Amount of transmitted information

(= # of transmitted EPR pairs)

excitation

Amount of transmitted energy

≤



10

0

Result

(Result) Universal lower bound

𝑐𝐿𝑅 ≤ 𝑐eff

(Interpretation)

The amount of energy transmission can never exceed 

the amount of information transmission.

Is the inequality sharp?

Only two possibilities:

• 𝑐𝐿𝑅 = 𝑐eff = 0                    (⇔ totally reflective)

• 𝑐𝐿𝑅 = 𝑐eff = 𝑐𝐿 = 𝑐𝑅          (⇔ totally transmissive) 
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1

Result

(Result) Universal lower bound

𝑐𝐿𝑅 ≤ 𝑐eff

(Interpretation)

The amount of energy transmission can never exceed 

the amount of information transmission.

Beyond holography?

⇒ One can check in some examples:

• free boson

• free fermion

• defect perturbation
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2

Example: free boson

𝑐𝐿𝑅 & 𝑐eff are parametrized by one parameter 𝑠 ∈ 0,1 ;

𝑐𝐿𝑅 = 𝑠2

𝑐eff =
1

2
+ 𝑠 +

3

𝜋2
𝑠 + 1 log 𝑠 + 1 log 𝑠 + 𝑠 − 1 Li2 1 − 𝑠 + 𝑠 + 1 Li2 −𝑠

𝑐𝐿𝑅 ≤ 𝑐eff

𝑐eff ≤ min 𝑐𝐿, 𝑐𝑅
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3

Example: free fermion

𝑐𝐿𝑅 ≤ 𝑐eff

𝑐eff ≤ min 𝑐𝐿, 𝑐𝑅

𝑐𝐿𝑅 & 𝑐eff are parametrized by one parameter 𝑠 ∈ (0,1);

𝑐𝐿𝑅 =
𝑠2

2

𝑐eff =
𝑠 − 1

2
−

3

𝜋2
𝑠 + 1 log 𝑠 + 1 log 𝑠 + 𝑠 − 1 Li2 1 − 𝑠 + 𝑠 + 1 Li2 −𝑠
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4

Example: defect perturbation

Perturbation by defect field 𝜙

𝛿𝑆 = 𝜆 න
𝛾

𝑑𝑤 𝜙(𝑤)

It has been shown in [Brehm],

𝑐eff = 𝑐 𝒯 +
1

4
(1 − 𝒯) + O(𝜆2)

This is consistent with 𝜆 expansion of 𝑐eff in free fermion.

Since 𝑐𝐿𝑅 = 𝑐𝒯 and 0 ≤ 𝒯 ≤ 1,

𝑐𝐿𝑅 ≤ 𝑐eff

𝛿𝑆 = 𝜆 න
𝛾

𝑑𝑤 𝜙(𝑤)

Setup: general CFT

CFT𝐿 = CFT𝑅 
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5

Comment

In three examples, 𝑐eff is a function of 𝑐𝐿𝑅,

which means that 𝑐eff and 𝑐𝐿𝑅 have the same information.

Is this true?

Answer is NO.

While  𝑐𝐿𝑅  is given by an integration over the entire region,

𝑐eff depends only on the minimal value of 𝐴(𝑟).

⇒ Relation between 𝑐𝐿𝑅 & 𝑐eff is highly nontrivial.



Appendix

 Universal Asymptotic Formula

 AdS/BCFT

 Calculation of EE in ICFT

 Universal Bound on 𝑐eff

• Holographic proof

• Entropic proof

 Universal Bound on 𝑐𝐿𝑅

• Holographic proof

• Check in non-holographic CFTs

 Higher dimensional generalization
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𝑐eff in higher 𝑑

Assume 𝑑 is even (few modifications in odd 𝑑)

General form of EE

𝑆𝐴 = 𝑠𝑑−2

𝑙

𝜖

𝑑−2

+ 𝑠𝑑−4

𝑙

𝜖

𝑑−4

+ ⋯ + 𝐶 log
𝑙

𝜖
+ 𝑠0

Candidate

Question:

What is a higher-dimensional analog of 𝑐eff?
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𝑐eff in higher 𝑑
Setup:

CFT on ℝ × 𝑆𝑑−1 with interface along equator ℝ × 𝑆𝑑−2

Holographic ICFT:

𝑑𝑠2 = 𝑒2𝐴(𝑟)𝑑𝑠AdS𝑑

2 + 𝑑𝑟2

Holographic EE:

𝑆𝐴 = ⋯ + −1
𝑑
2−14 𝑐eff log

2

𝜖
+ s0

where

𝑐eff =
𝜋

𝑑
2

Γ
𝑑
2

𝑒 𝑑−1 𝐴 𝑟min

4𝜋𝐺𝑁
(𝑑−1)
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𝑐eff in higher 𝑑

Proposition 1

𝑐𝐿 =
𝜋

𝑑
2

Γ
𝑑
2

𝐴′ ∞
1−𝑑

4𝜋𝐺𝑁
(𝑑−1)

𝑐𝑅 =
𝜋

𝑑
2

Γ
𝑑
2

𝐴′ −∞
1−𝑑

4𝜋𝐺𝑁
(𝑑−1)

𝑐eff =
𝜋

𝑑
2

Γ
𝑑
2

𝑒 𝑑−1 𝐴 𝑟min

4𝜋𝐺𝑁
(𝑑−1)

Proposition 2

NEC holds in any dimension

⇒  𝑒−2𝐴(𝑟min) ≥ 𝐴′ ±∞ 2

(Result) Universal upper bound in any dimension

𝑐eff ≤ min(𝑐𝐿, 𝑐𝑅)
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Higher-dimension

• Higher dimensional analog of universal formula

𝑆𝐴 =
𝑐𝐿 + 𝑐eff

6
log

𝐿

𝜋𝜖

• Higher dimensional analog of 

𝑐eff ≤ min(𝑐𝐿, 𝑐𝑅)

True

True

Our candidate for 𝑐eff satisfies all higher dimensional 

analogs of universal formulae.

⇒higher dimensional analog of 𝑐eff is defined by

𝑆𝐴 = ⋯ + −1
𝑑
2−14 𝑐eff log

2

𝜖
+ s0
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𝑐eff in odd 𝑑
Setup:

CFT on ℝ × 𝑆𝑑−1 with interface along equator ℝ × 𝑆𝑑−2

Holographic ICFT:

𝑑𝑠2 = 𝑒2𝐴(𝑟)𝑑𝑠AdS𝑑

2 + 𝑑𝑟2

Holographic EE:

𝑆𝐴 = ⋯ + −1
𝑑−1

2 2𝜋 𝑐eff 

where

𝑐eff =
𝜋

𝑑
2

Γ
𝑑
2

𝑒 𝑑−1 𝐴 𝑟min

4𝜋𝐺𝑁
(𝑑−1)

Same as even 𝑑

Not log term
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