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Quantum gravity

• Gravity path integral
• Quantum gravity may be defined through the path integral formulation
• Path integral may converge when its integral contour is complexified
• What happens when metrices are complexified

• Complex metrices
• Examples

•  Rotating blackhole in imaginary time
ü  No-boundary proposal for early universe [Hartle-Hawking’83]

• There would be too many complex saddles and it is unclear 
which complex metrics should be integrated over



Allowable complex metrics

• A complexified metric of Sd+1

• The universe begins from “nothing” at              and evolves into dSd+1  as 
• There exists a family of complex spacetimes labeled by n

• A criteria of D-dim. allowable complex metrics

ds
2 = !

2

dS(θ
′(u)2du2 + cos2 θ(u)dΩ2

d
)

[Louko-Sorkin ’97;Kontsevich-Segal ’21;Witten ’21]

Re

(

√

detggi1j1 . . . giqjqFi1...iqFj1...jq

)

> 0, 0 ≤ q ≤ D

The cases with n=-1,0 are allowed, which corresponds to 
the Hartle–Hawking geometry

cos θ(u = 0) = 0

u = 0 u → ∞



Complex metrices from dS holography

• Application of holography
• We examine gravity complex saddles via dS/CFT correspondence
• dS/CFT is less understood than AdS/CFT, for instance, due to fewer concrete 

examples

• Higher-spin holography [Anninos-Hartman-Strominger’11]

• Analytic continuation of duality between higher-spin gravity on AdS4 
and 3d O(N) vector model [Klebanov-Polyakov’02]

Higher-spin gravity on dS4 
at the classical limit

3d Sp(N) vector model 
at the large N limit



The aim of this talk

• dS3/CFT2 involving higher-spin gravity
[YH-Nishioka-Takayanagi-Taki ’22; ’22] 

• Derived from AdS3 higher-spin holography (Gaberdiel-Gopakumar duality) via 
analytic continuation 

• Relevant complex metrices of dS3 gravity
• Read off gravity saddle points from the exact result of dual CFT
• Determine the path integral contour in mini-superspace approach

Higher-spin dS3 gravity 
(≃SL(N) CS theory) with 
matters at the classical limit

2d coset model with 
large imaginary 
central charge



The plan of this talk

• Introduction
• dS/CFT correspondence
• Dual CFT approach
• Mini-superspace approach
• Conclusion



dS/CFT correspondence



AdS/CFT correspondence

• Poincare coordinates (boundary at           )

• Map between AdS bulk fields and CFT operators

• GKP-Witten relation ’98
• Gravity scattering amplitudes ó CFT correlation functions 

ds
2 =

!
2

AdS

z2



dz
2
− dt

2 +
d−1
∑

j=1

(dzj)2





AdS bulk fields CFT operators



dS/CFT correspondence

• Describe dS gravity via the wave functional 
of universe

• Wave functional ó Generating functional 
of correlation functions in dual CFT

Correlators computed by 
dual Euclidean CFT

[Maldacena ’03]

<latexit sha1_base64="sjmJbE1/NPzGxMY1V6o2h86We08="></latexit>

 dS[h,�0] =

Z
DgD� exp iS[g,�]



Gaberdiel-Gopakumar duality (AdS3)

• A version of Gaberdiel-Gopakumar duality

• The simplest case with N=2

Higher-spin AdS3 gravity 
(≃SL(N) CS theory) with 
matters at classical limit

2d coset model with 
large central charge

[Castro-Gopakumar-Gutperle-Raeymaekers ’12; Gaberdiel-Gopakumar ’12] 
(see [Gaberdiel-Gopakumar ’11] for original proposal)

Spins of gauge fields

Einstein gravity on AdS3 with 
matters at classical limit

2d coset model with
large central charge

Describes analytic continuation of Virasoro-
minimal model, which reduce to Liouville theory 
[Creutzig-YH ’21]



Map of parameters

• A version of Gaberdiel-Gopakumar duality

• Comparison of symmetry algebra

Einstein gravity on AdS3 with 
matters at classical limit

2d coset model with 
large central charge

• Near AdS3 boundary, Virasoro symmetry 
appears with central charge 
[Brown-Henneaux ’86]

• The central charge of the coset is

• To have large central charge, we set

c = 1−
6

(k + 2)(k + 3)

k → −3−
6

c
+O(c−2)

c =
3!AdS

2G
→ ∞



Analytic continuation: AdS3 à dS3 

• Replace                        to move from AdS3 to dS3

• Gaberdiel-Gopakumar duality becomes

• Compare central charges [Strominger’01]

• Compute the dual CFT partition functions at large central charge 
à agrees with gravity

Einstein gravity on dS3 with 
matters at classical limit

2d coset model with 
imaginary central charge

[YH-Nishioka-Takayanagi-Taki ’22; ’22] 

c = 1−
6

(k + 2)(k + 3)
= −ic(g), c(g) =

3!dS
2G

→ ∞ k → −3 + i
6

c(g)
+O(c(g)−2)



Dual CFT approach



Liouville theory

• Action of Liouville theory 

• Large central charge limit is realized by

• Wave functional related to CFT 2-pt. function
•              kept finite (and set             for simplicity)

c = 1 + 6(b+ b
−1)2 b

−2
=

c

6
−

13

6
+ · · ·

SL =
1

2π

∫

d2z
√
g

[

∂φ∂̄φ+
Q

4
Rφ+ πµe2bφ

]

, Q = b+ 1/b

〈Vα(z1)Vα(z2)〉 =

∫
Dφe−SLe2α(φ(z1)+φ(z2))

η = αb η → 0



Semi-classical saddles for CFT 2-pt. function

• If          solves the EOM                                , then so does 

• Semi-classical 2-pt. function read off from its exact result

∂∂̄φc = 2πµb2eφcφ(0)
c

The integer n labels distinct complex saddles of Liouville theory 

[Harlow-Maltz-Witten ’11] 

lim
η=αb→0

〈Vα(z1)Vα(z2)〉 ∝

(φc = 2bφ)



Semi-classical saddles of dS gravity

• dS3 wave functional obtained as a suitable limit of the 2-pt. function

• Parameter b expressed in gravity variables

• Wave functional decomposes into a sum over saddles

• Pick saddle points with n=-1,0 è consistent with KSW-allowable criteria

ΨdS = lim
η=αb→0

〈Vα(z1)Vα(z2)〉

b
−2

= −i
c(g)

6
−

13

6
+ · · · = −i

!dS

4G
−

13

6
+ · · ·

Re b
−2

< 0

[Chen-YH-Taki-Uetoko ’23;’23]



Mini-superspace approach



Mini-superspace approach

• Compute path integral for wave functional with 
Einstein-Hilbert action

• Reduced model with the ansatz for the metric

• The path integral reduce accordingly
• Fix a gauge                   and integrate over N along a 

contour C

cf. [Feldbrugge-Lehners-Turok’17]



Integration over scale factor

• EOM for a(𝜏):
• Solution subject to boundary conditions

                                     

• The path integral is approximated by

• The contour for N is given by a set of 
Lefschetz thimbles

a(0) = 0, a(1) = a1



Lefschetz thimbles

• How to determine Lefschetz thimbles
1. Find saddle points solving

2. Determine steepest descents       from each saddle 
satisfying

3. Choose the integral contour as a sum of relevant thimbles

∂I[N ]/∂N = 0

J
±

n
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Figure 2: The left panel shows the plot when ωdS → ωdS + iε. The right panel shows the plot
when ωdS → ωdS ↑ iε.

Now we have a question: Which direction of the shift, ωdS → ωdS±iε, is physically appropriate
for the dS3 case? One answer is given by the dual CFT point of view via dS/CFT correspondence,
where the central charge of the dual CFT is5

c = ↑i
3ωdS
2G

+ 13 +O(G) . (3.26)

In the gravity interpretation, the constant term “13” comes from the one-loop contributions.
This contribution can also be realized as a shift ωdS → ωdS + iε, which corresponds to the left
panel of figure 2 (Note that we adopt the notation ωAdS = ↑iωdS).

Finally let us discuss the contour C for the N integral. Our goal is to find a contour that
reproduces the CFT calculation (2.25). Each saddle point N±

m gives the leading contribution to
the wave functional of universe

!±
m ↓ e

(2m+1)ωdSε
4G (2a1)

↑i
ωdS
2G ± ϑ

2G . (3.27)

Due to ε in the exponent, !→
m from the saddles in the lower half plane are suppressed in the large

a1 approximation. Naively to preserve future time direction, one would choose the integration
contour as iR+. Though the integral along this contour diverges, it can be deformed to coincide
J

+

→1
. However, this contour does not seem to be physical because ! has only the suppressing

saddle. To match with the CFT result (2.25), we have to pick up two saddles J
+

0
,J +

→1
from

the upper half plane. Therefore we propose the contour that comes from the positive imaginary
infinity, rounds the branch cut lying between N = 0 and N = ϑ, and goes back to the positive
imaginary infinity. This contour can be deformed to

↑J
+

→1
+ J

→
0

+ J
+

0
, (3.28)

where the signatures take ↑1 if the orientations of the steepest descent and the contour are
opposite. Since the contribution from J

→
0

is suppressed as explained above, the semi-classical

5Note that our formula for the central charge is di!erent from [25, 26], where the Newton constant is already
normalized so that the central charge involves all quantum corrections. The notation used here is rather ordinary
one, same as the original Brown-Henneaux formula [12].
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Integral contour

• Each saddle contributes

• For large a1, a series of contributions          vanishes

• Dual CFT suggests the form of wave functional

• We pick the contour reproducing the dual CFT result 

[Chen-YH-Taki-Uetoko ’24;’24]
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Conclusion



Summary & Future problems

• Summary
• Gravity path integrals over complex metrics provide a useful framework
• Holography tells us which complex saddles are realized
• We applied the dS/CFT to 3d  gravity and fix the path integral contour in mini-

superspace approach
• A similar analysis can be carried out for AdS₃ gravity [Chen-YH-Taki-Uetoko’24;’24]

• Future problems
• Extend these ideas beyond 3d pure gravity and explore higher-dim. cases
• Examine more generic geometries, such as, blackhole, wormhole etc.
• Consider correlation functions and/or the insertion of Wilson lines



Appendix



Semi-classical saddles of AdS gravity

• The partition function for AdS3 can be described by the limit of 2-pt. 
function

• The parameter b can be written in terms of gravity parameters as

• The partition function for AdS3 can be decomposed as

ZAdS = lim
η=αb→0

〈Vα(z1)Vα(z2)〉

b
−2

=
c

6
−

13

6
+ · · · =

!AdS

4G
−

13

6
+ · · · Re b

−2
> 0

Which geometry corresponds to the saddle point labeled by  
n and why the sum is taken over n=0,1,…?

ZAdS ∼

∑

n=0,1,2,...

ΘnZ0 , Θn = e

!AdS

2G
nπi

,



Geometry corresponding to saddle

• Ansatz for the geometry

• We assume that the manifold truncates at               and approaches to Euclidean AdS3 as
• There exists a family of complex geometry labeled by n

• Geometrical interpretation

• The geometry is Euclidean AdS!for 𝑢 > 1, and a three-sphere with three time 
directions for 0 ≤ 𝑢 ≤ 1

• The three-sphere can be generated by a large gauge transformation in the Chern–
Simons formulation of gravity, and the associated phase factor can be reproduced

ds
2 = !

2

AdS(θ
′(u)2du2 + sinh2 θ(u)dΩ2)

sinh θ(u = 0) = 0

u = 0
u → ∞

θ(u = 0) = nπi (n ∈ Z)

θ = nπi(1− u) (0 ≤ u ≤ 1), θ = u− 1 (1 < u)



Mini-superspace approach

• We want to compute path integral for AdS3 partition 
function with I[g] as Einstein-Hilbert action

• We consider a reduced model with the following 
ansatz of metric

• The path integral reduce to

• We set                     by fixing a gauge and integrate over N 
along a contour 

ZAdS[h] =

∫
Dge−I[g]

ds
2 = !

2

AdS

[

N(r)2dr2 + a(r)2dΩ2
]

(0 ≤ r ≤ 1)

N(r) = N

C

r = 0r = 1

cf. [Feldbrugge-Lehners-Turok’17;Di Tucci-Heller-Lehners’20]



Reduce to one-parameter integration

• The EOM for a(r) is
• A solution subject to boundary conditions

                                     is

• The path integral is approximated by

• The contour for N is given by a set of 
Lefschetz thimbles

a(0) = 0, a(1) = a1

ā
(N)(r) =

a1

sinhN
sinh(Nr)

r = 0r = 1

-4 -2 0 2 4

-4

-2

0

2

4

J+
0

J+
1

J+
→1

J→
0

J→
1

J→
→1



Lefschetz thimbles

• How to determine Lefschetz thimbles
1. Compute the saddle points by solving

2. Find out steepest descents from the saddle point satisfying 
                            as denoted by

•  How to find the contour
1. The integral contour should be given by the sum of Lefschetz thimbles
2. We choose the contour which can be deformed from a natural contour, i.e., 

along the positive real axis

∂I[N ]/∂N = 0

N+
n

= nπi+ ln

(

a1 +

√

a21 + 1

)

, N−

n
= nπi− ln

(

a1 +

√

a21 + 1

)
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±

n

C =

∑
∞

n=0
J +
n

−
∑

∞

n=1
J−

n



Evaluation of path integral

• Each contribution from the saddle point is

• For large a1, a series of contributions          vanishes
• The path integral is given by the sum as

• We can change the radial coordinate as

• Reproduce the previous radius coordinate for 
• Reproduce the geometry from ansatz for 
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Z
±

n
∼ e

nπi"AdS

2G (2a1)
±

"AdS

2G

Z
−

n

Z ∼

∞∑

n=0

Zn

+
∼

∞∑

n=0

e

nπi"AdS

2G Reproduce the previous result

Nr → R(r) = −nπi(1− r)q + ln(2a1)r
q

q = 1

q → ∞

R(r)
ln(2a1)

−nπi

[Chen-YH-Taki-Uetoko’24;’24]


