

Complex saddles of de Sitter gravity via holography

Yasuaki Hikida (Osaka Institute of Technology)

In corroboration with

Heng-Yu Chen (NTU), Yusuke Taki, Takahiro Uetoko (NIT Kagawa)

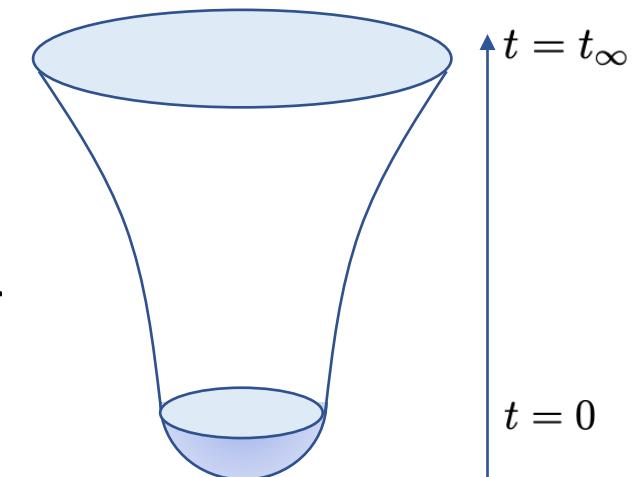
Refs. PRD107(2023)L101902; PRD108(2023)066005; PRD110(2024) 2026018; JHEP07(2024)283

cf. YH-Nishioka-Takayanagi-Taki, PRL'22; JHEP'22

Dec 17, 2025@KEK Theory Workshop 2025

Quantum gravity

- Gravity path integral
 - Quantum gravity may be defined through the path integral formulation
 - Path integral may converge when its integral contour is **complexified**
 - What happens when metrices are complexified
- Complex metrices
 - Examples
 - Rotating blackhole in imaginary time
 - ✓ No-boundary proposal for early universe [Hartle-Hawking'83]
 - There would be too many complex saddles and it is unclear which complex metrics should be integrated over



Allowable complex metrics

[Louko-Sorkin '97; Kontsevich-Segal '21; Witten '21]

- A complexified metric of S^{d+1}

$$ds^2 = \ell_{\text{ds}}^2 (\theta'(u)^2 du^2 + \cos^2 \theta(u) d\Omega_d^2)$$

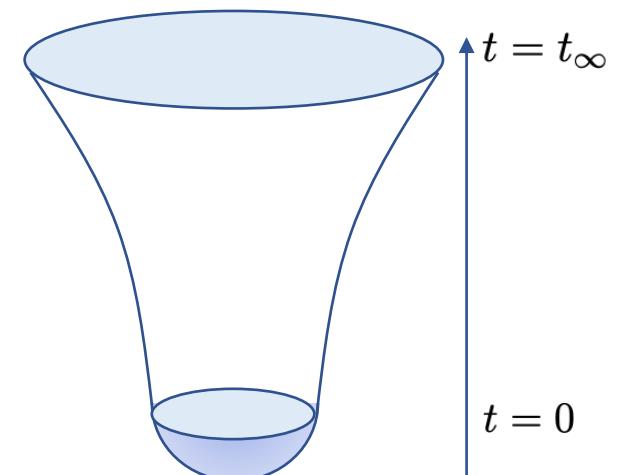
- The universe begins from “nothing” at $u = 0$ and evolves into dS_{d+1} as $u \rightarrow \infty$
- There exists a family of complex spacetimes labeled by n

$$\cos \theta(u = 0) = 0 \longrightarrow \theta(u = 0) = (n + 1/2)\pi \quad (n \in \mathbb{Z})$$

- A criteria of D -dim. allowable complex metrics

$$\text{Re} \left(\sqrt{\det g} g^{i_1 j_1} \dots g^{i_q j_q} F_{i_1 \dots i_q} F_{j_1 \dots j_q} \right) > 0, \quad 0 \leq q \leq D$$

→ The cases with $n=-1, 0$ are allowed, which corresponds to the Hartle–Hawking geometry



Complex metrics from dS holography

- Application of holography
 - We examine gravity complex saddles via **dS/CFT correspondence**
 - dS/CFT is less understood than AdS/CFT, for instance, due to fewer concrete examples
- Higher-spin holography [Anninos-Hartman-Strominger'11]

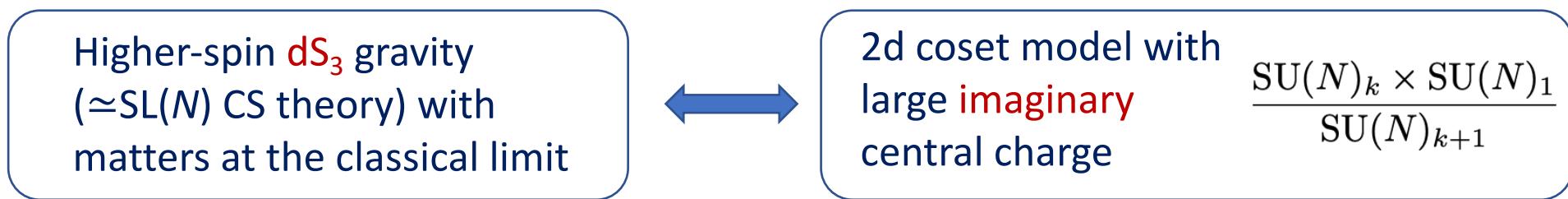
Higher-spin gravity on dS_4
at the classical limit

3d $Sp(N)$ vector model
at the large N limit

- Analytic continuation of duality between higher-spin gravity on AdS_4 and 3d $O(N)$ vector model [Klebanov-Polyakov'02]

The aim of this talk

- dS_3/CFT_2 involving higher-spin gravity
[YH-Nishioka-Takayanagi-Taki '22; '22]



- Derived from AdS_3 higher-spin holography (Gaberdiel-Gopakumar duality) via analytic continuation
- Relevant complex metrics of dS_3 gravity
 - Read off gravity saddle points from the exact result of dual CFT
 - Determine the path integral contour in mini-superspace approach

The plan of this talk

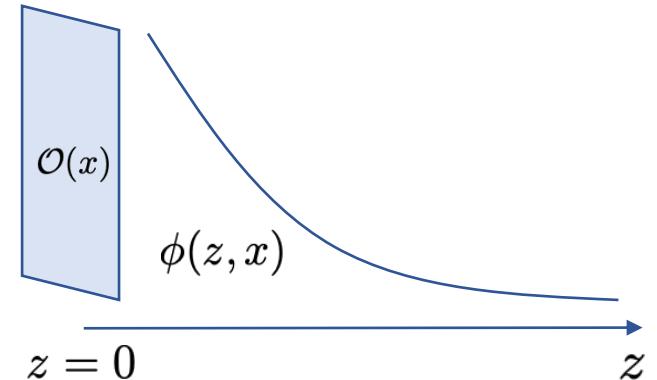
- Introduction
- dS/CFT correspondence
- Dual CFT approach
- Mini-superspace approach
- Conclusion

dS/CFT correspondence

AdS/CFT correspondence

- Poincare coordinates (boundary at $z = 0$)

$$ds^2 = \frac{\ell_{\text{AdS}}^2}{z^2} \left(dz^2 - dt^2 + \sum_{j=1}^{d-1} (dz^j)^2 \right)$$



- Map between AdS bulk fields and CFT operators

AdS bulk fields

$$\phi(z, x)$$

CFT operators

$$\mathcal{O}(x)$$

- GKP-Witten relation '98

$$\left[\left\langle \prod_{i=1}^n \mathcal{O}(x_i) \right\rangle = \prod_{i=1}^n \frac{\delta}{\delta \phi_0(x_i)} \left\langle \exp \left(\int d^d x \phi_0(x) \mathcal{O}(x) \right) \right\rangle \Big|_{\phi_0=0} \right]$$

- Gravity scattering amplitudes \leftrightarrow CFT correlation functions

$$\mathcal{Z}_{\text{AdS}} [\phi(z=0, x) = \phi_0] = \left\langle \exp \left(\int d^d x \phi_0(x) \mathcal{O}(x) \right) \right\rangle$$

dS/CFT correspondence

[Maldacena '03]

- Describe dS gravity via the wave functional of universe

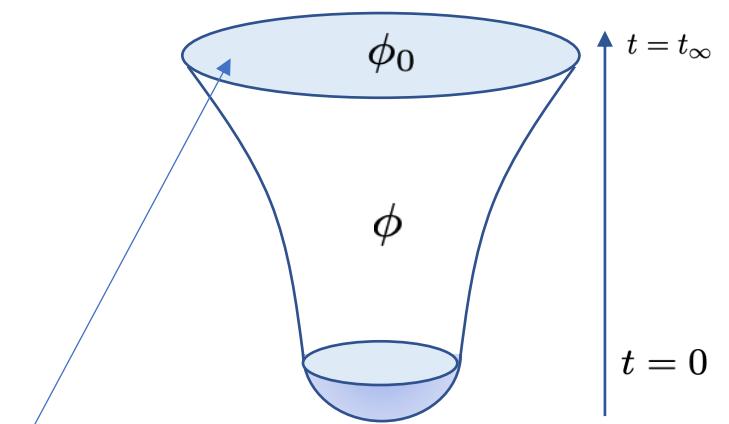
$$\Psi_{\text{dS}}[h, \phi_0] = \int \mathcal{D}g \mathcal{D}\phi \exp iS[g, \phi]$$

with $g = h, \phi = \phi_0$ at $t = t_\infty$

- Wave functional \Leftrightarrow Generating functional of correlation functions in dual CFT

$$\Psi_{\text{dS}}[\phi_0] = \left\langle \exp \left(\int d^d x \phi_0(x) \mathcal{O}(x) \right) \right\rangle$$

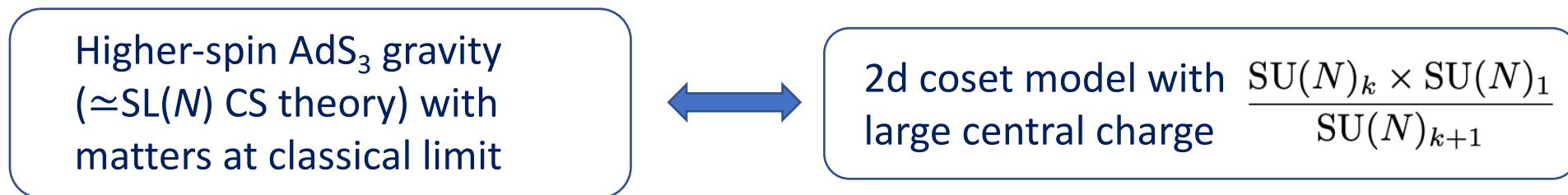
Correlators computed by
dual Euclidean CFT



Gaberdiel-Gopakumar duality (AdS_3)

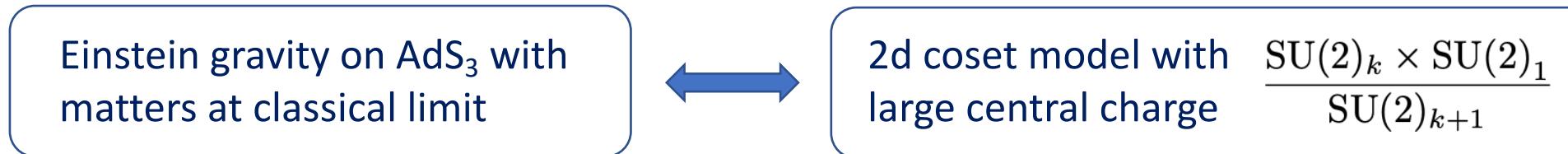
[Castro-Gopakumar-Gutperle-Raeymaekers '12; Gaberdiel-Gopakumar '12]
(see [Gaberdiel-Gopakumar '11] for original proposal)

- A version of Gaberdiel-Gopakumar duality



Spins of gauge fields $s = 2, 3, \dots, N$

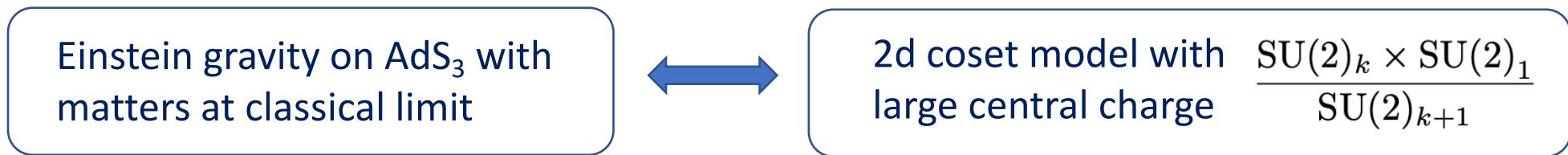
- The simplest case with $N=2$



Describes analytic continuation of Virasoro-minimal model, which reduce to Liouville theory
[Creutzig-YH '21]

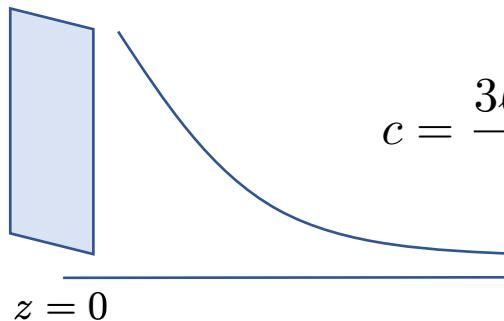
Map of parameters

- A version of Gaberdiel-Gopakumar duality



- Comparison of symmetry algebra

- Near AdS_3 boundary, Virasoro symmetry appears with central charge [Brown-Henneaux '86]



- The central charge of the coset is

$$c = 1 - \frac{6}{(k+2)(k+3)}$$

- To have large central charge, we set

$$k \rightarrow -3 - \frac{6}{c} + \mathcal{O}(c^{-2})$$

Analytic continuation: $\text{AdS}_3 \rightarrow \text{dS}_3$

[YH-Nishioka-Takayanagi-Taki '22; '22]

- Replace $\ell_{\text{AdS}} \rightarrow -i\ell_{\text{dS}}$ to move from AdS_3 to dS_3
- Gaberdiel-Gopakumar duality becomes

Einstein gravity on dS_3 with
matters at classical limit

2d coset model with $\frac{\text{SU}(2)_k \times \text{SU}(2)_1}{\text{SU}(2)_{k+1}}$
imaginary central charge

- Compare central charges [Strominger'01]

$$c = 1 - \frac{6}{(k+2)(k+3)} = -i c^{(g)}, \quad c^{(g)} = \frac{3\ell_{\text{dS}}}{2G} \rightarrow \infty \quad \longleftrightarrow \quad k \rightarrow -3 + i \frac{6}{c^{(g)}} + \mathcal{O}(c^{(g)-2})$$

- Compute the dual CFT partition functions at large central charge
→ agrees with gravity

Dual CFT approach

Liouville theory

- Action of Liouville theory

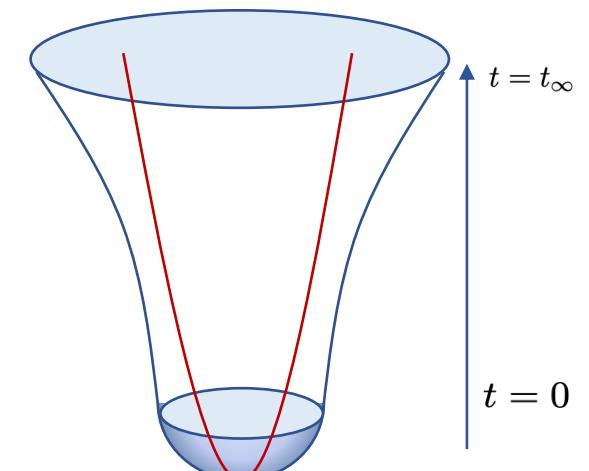
$$S_L = \frac{1}{2\pi} \int d^2z \sqrt{g} \left[\partial\phi \bar{\partial}\phi + \frac{Q}{4} \mathcal{R}\phi + \pi\mu e^{2b\phi} \right], \quad Q = b + 1/b$$

- Large central charge limit is realized by

$$c = 1 + 6(b + b^{-1})^2 \quad \longrightarrow \quad b^{-2} = \frac{c}{6} - \frac{13}{6} + \dots$$

- Wave functional related to CFT 2-pt. function
 - $\eta = \alpha b$ kept finite (and set $\eta \rightarrow 0$ for simplicity)

$$\langle V_\alpha(z_1) V_\alpha(z_2) \rangle = \int \mathcal{D}\phi e^{-S_L} e^{2\alpha(\phi(z_1) + \phi(z_2))}$$



Semi-classical saddles for CFT 2-pt. function

[Harlow-Maltz-Witten '11]

- If $\phi_c^{(0)}$ solves the EOM $\partial\bar{\partial}\phi_c = 2\pi\mu b^2 e^{\phi_c}$, then so does

$$\phi_c^{(n)} = \phi_c^{(0)} + 2\pi in \quad (\phi_c = 2b\phi)$$

→ The integer n labels distinct complex saddles of Liouville theory

- Semi-classical 2-pt. function read off from its exact result

$$\lim_{\eta=\alpha b \rightarrow 0} \langle V_\alpha(z_1) V_\alpha(z_2) \rangle \propto \left\{ \begin{array}{l} \frac{1}{e^{-\pi i/b^2} - e^{\pi i/b^2}} = \sum_{n=0,1,\dots\infty} e^{(2n+1)\pi i/b^2} \text{ for } \text{Re } b^{-2} > 0 \\ e^{\pi i/b^2} - e^{-\pi i/b^2} = \sum_{n=-1,0} (-1)^n e^{(2n+1)\pi i/b^2} \text{ for } \text{Re } b^{-2} < 0 \end{array} \right.$$

Semi-classical saddles of dS gravity

- dS₃ wave functional obtained as a suitable limit of the 2-pt. function

$$\Psi_{\text{dS}} = \lim_{\eta=\alpha b \rightarrow 0} \langle V_\alpha(z_1) V_\alpha(z_2) \rangle$$

- Parameter b expressed in gravity variables

$$b^{-2} = -i \frac{c^{(g)}}{6} - \frac{13}{6} + \dots = -i \frac{\ell_{\text{dS}}}{4G} - \frac{13}{6} + \dots \quad \rightarrow \quad \text{Re } b^{-2} < 0$$

- Wave functional decomposes into a sum over saddles

$$\Psi_{\text{dS}} \sim \sum_{n=-1,0} (-1)^n e^{S_{\text{GH}}^{(n)}/2 + i\mathcal{I}}, \quad S_{\text{GH}}^{(n)} = \frac{(2n+1)\pi\ell_{\text{dS}}}{2G}$$

- Pick saddle points with $n=-1,0 \rightarrow$ consistent with KSW-allowable criteria

Mini-superspace approach

Mini-superspace approach

cf. [Feldbrugge-Lehners-Turok'17]

- Compute path integral for wave functional with Einstein-Hilbert action

$$\Psi = \int \mathcal{D}g e^{-I[g]}$$

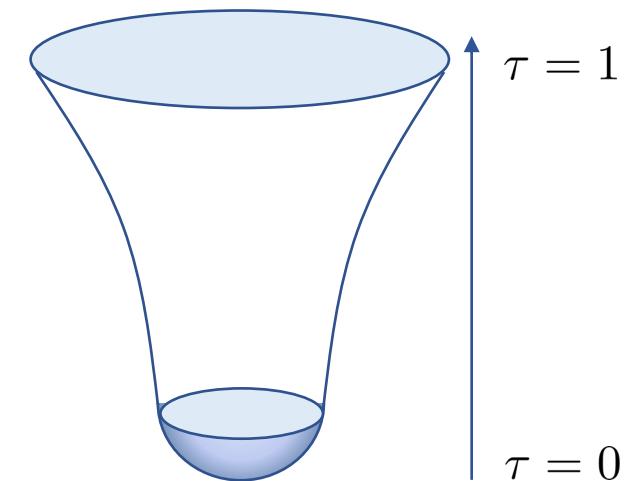
- Reduced model with the ansatz for the metric

$$ds^2 = \ell_{\text{dS}}^2 [N(\tau)^2 d\tau^2 + a(\tau)^2 d\Omega^2] \quad (0 \leq \tau \leq 1)$$

- The path integral reduce accordingly

- Fix a gauge $N(\tau) = N$ and integrate over N along a contour \mathcal{C}

$$\Psi \simeq \int_{\mathcal{C}} dN \int \mathcal{D}a(\tau) \exp \left[\frac{\ell_{\text{dS}}}{2G} \int_0^1 d\tau N \left(\frac{1}{N^2} \left(\frac{da}{d\tau} \right)^2 - a^2 + 1 \right) \right]$$



Integration over scale factor

- EOM for $a(\tau)$: $d^2a/d\tau^2 + N^2a = 0$
- Solution subject to boundary conditions

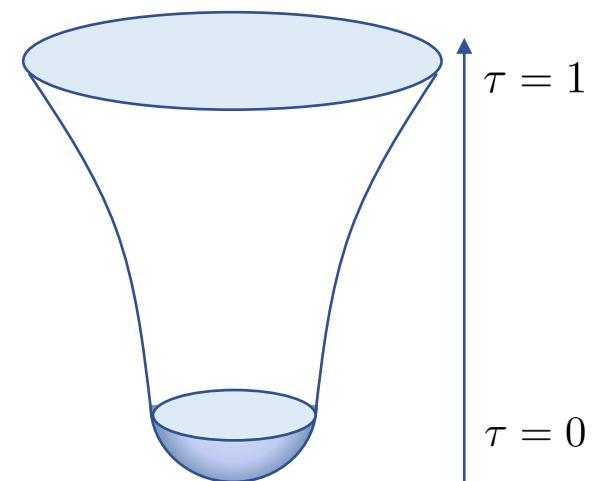
$$a(0) = 0, a(1) = a_1$$

$$\bar{a}^{(N)}(r) = \frac{a_1}{\sin N} \sin(N\tau)$$

- The path integral is approximated by

$$\Psi \simeq \int_{\mathcal{C}} dN \left(\frac{1}{\sqrt{N} \sin N} \right)^{1/2} e^{-I[N]}, \quad I[N] = -\frac{\ell_{\text{dS}}}{2G} (N + a_1^2 \cot N)$$

- The contour for N is given by a set of Lefschetz thimbles



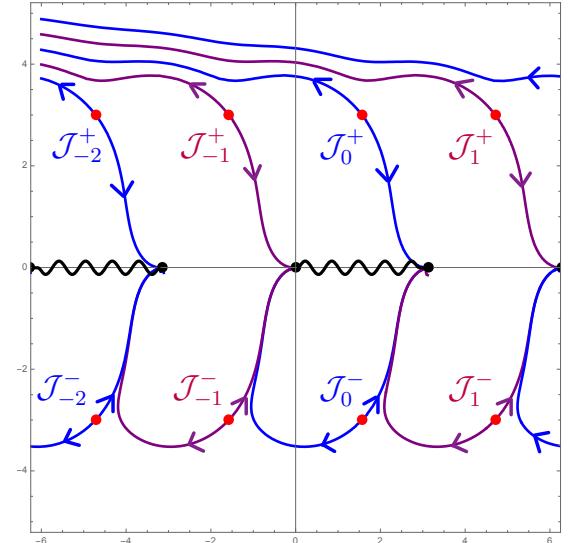
Lefschetz thimbles

- How to determine Lefschetz thimbles
 1. Find saddle points solving $\partial I[N]/\partial N = 0$

$$N_m^+ = \left(m + \frac{1}{2}\right)\pi + i \ln \left(a_1 + \sqrt{a_1^2 - 1}\right),$$

$$N_m^- = \left(m + \frac{1}{2}\right)\pi i - i \ln \left(a_1 + \sqrt{a_1^2 - 1}\right)$$

2. Determine steepest descents \mathcal{J}_n^\pm from each saddle satisfying $\text{Im } I[N] = \text{const.}$
3. Choose the integral contour as a sum of relevant thimbles



$$(\ell_{\text{dS}} \rightarrow \ell_{\text{dS}} + i\epsilon, \epsilon > 0)$$

Integral contour

[Chen-YH-Taki-Uetoko '24; '24]

- Each saddle contributes

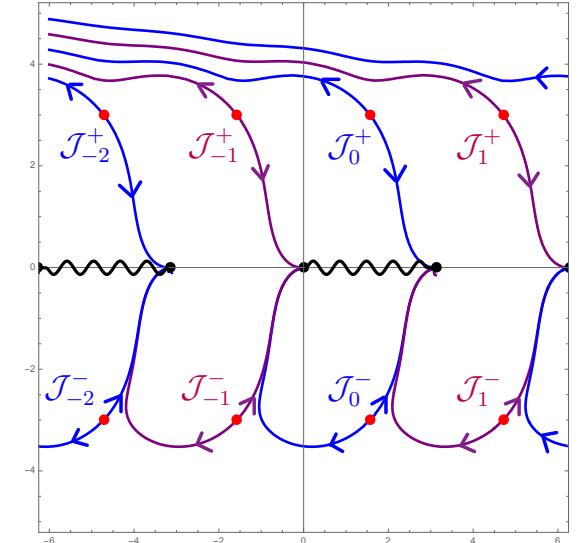
$$\Psi_m^\pm \sim e^{\frac{(2m+1)\pi\ell_{\text{dS}}}{4G}} (2a_1)^{\pm\frac{i\ell_{\text{dS}}}{2G}\pm\frac{\epsilon}{2G}}$$

- For large a_1 , a series of contributions Ψ_m^- vanishes
- Dual CFT suggests the form of wave functional

$$\Psi \sim \left(e^{\frac{\pi\ell_{\text{dS}}}{4G}} - e^{-\frac{\pi\ell_{\text{dS}}}{4G}} \right) (2a_1)^{i\frac{\ell_{\text{dS}}}{2G}}$$

- We pick the contour reproducing the dual CFT result

$$\mathcal{C} = -\mathcal{J}_{-1}^+ + \mathcal{J}_0^- + \mathcal{J}_0^+$$



$$(\ell_{\text{dS}} \rightarrow \ell_{\text{dS}} + i\epsilon, \epsilon > 0)$$

Conclusion

Summary & Future problems

- Summary
 - Gravity path integrals over **complex metrics** provide a useful framework
 - **Holography** tells us which complex saddles are realized
 - We applied the dS/CFT to 3d gravity and fix the path integral contour in mini-superspace approach
 - A similar analysis can be carried out for AdS_3 gravity [Chen-YH-Taki-Uetoko'24; '24]
- Future problems
 - Extend these ideas beyond 3d pure gravity and explore higher-dim. cases
 - Examine more generic geometries, such as, blackhole, wormhole etc.
 - Consider correlation functions and/or the insertion of Wilson lines

Appendix

Semi-classical saddles of AdS gravity

- The partition function for AdS_3 can be described by the limit of 2-pt. function

$$\mathcal{Z}_{\text{AdS}} = \lim_{\eta=\alpha b \rightarrow 0} \langle V_\alpha(z_1) V_\alpha(z_2) \rangle$$

- The parameter b can be written in terms of gravity parameters as

$$b^{-2} = \frac{c}{6} - \frac{13}{6} + \dots = \frac{\ell_{\text{AdS}}}{4G} - \frac{13}{6} + \dots \quad \xrightarrow{\hspace{1cm}} \quad \text{Re } b^{-2} > 0$$

- The partition function for AdS_3 can be decomposed as

$$\mathcal{Z}_{\text{AdS}} \sim \sum_{n=0,1,2,\dots} \Theta_{\textcolor{red}{n}} \mathcal{Z}_0, \quad \Theta_{\textcolor{red}{n}} = e^{\frac{\ell_{\text{AdS}}}{2G} \textcolor{red}{n} \pi i},$$

 Which geometry corresponds to the saddle point labeled by $\textcolor{red}{n}$ and why the sum is taken over $n=0,1,\dots$?

Geometry corresponding to saddle

- Ansatz for the geometry

$$ds^2 = \ell_{\text{AdS}}^2 (\theta'(u)^2 du^2 + \sinh^2 \theta(u) d\Omega^2)$$

- We assume that the manifold truncates at $u = 0$ and approaches to Euclidean AdS_3 as $u \rightarrow \infty$
- There exists a family of complex geometry labeled by n

$$\sinh \theta(u = 0) = 0 \quad \rightarrow \quad \theta(u = 0) = n\pi i \quad (n \in \mathbb{Z})$$

- Geometrical interpretation

$$\theta = n\pi i(1 - u) \quad (0 \leq u \leq 1), \quad \theta = u - 1 \quad (1 < u)$$

- The geometry is Euclidean AdS_3 for $u > 1$, and a three-sphere with three time directions for $0 \leq u \leq 1$
- The three-sphere can be generated by a **large gauge transformation** in the Chern-Simons formulation of gravity, and the associated phase factor can be reproduced

Mini-superspace approach

cf. [Feldbrugge-Lehners-Turok'17; Di Tucci-Heller-Lehners'20]

- We want to compute path integral for AdS_3 partition function with $I[g]$ as Einstein-Hilbert action

$$\mathcal{Z}_{\text{AdS}}[h] = \int \mathcal{D}g e^{-I[g]}$$

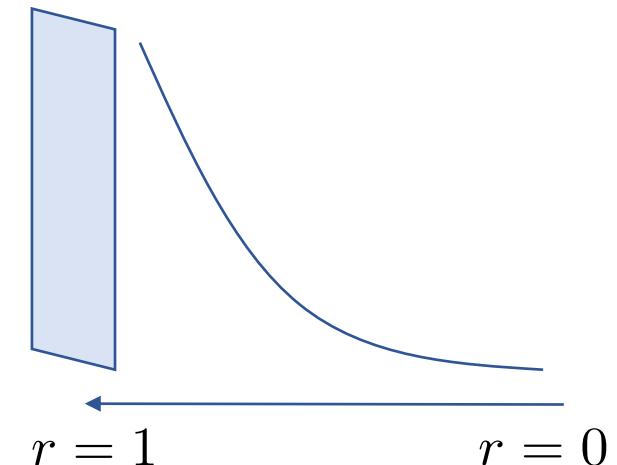
- We consider a **reduced model** with the following ansatz of metric

$$ds^2 = \ell_{\text{AdS}}^2 [N(r)^2 dr^2 + a(r)^2 d\Omega^2] \quad (0 \leq r \leq 1)$$

- The path integral reduce to

$$\mathcal{Z} \simeq \int_{\mathcal{C}} dN \int \mathcal{D}a(r) \exp \left[\frac{\ell_{\text{AdS}}}{2G} \int_0^1 dr N \left(\frac{1}{N^2} \frac{d^2 a}{dr^2} + a^2 + 1 \right) \right]$$

- We set $N(r) = N$ by fixing a gauge and integrate over N along a contour \mathcal{C}



Reduce to one-parameter integration

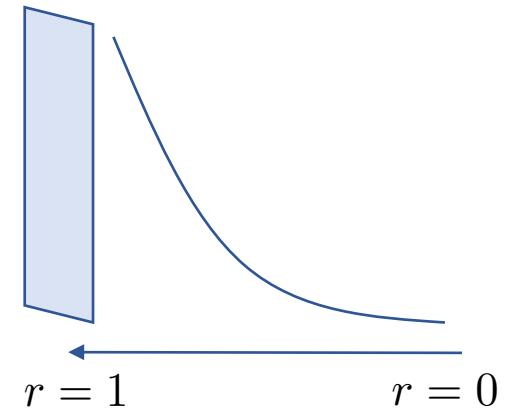
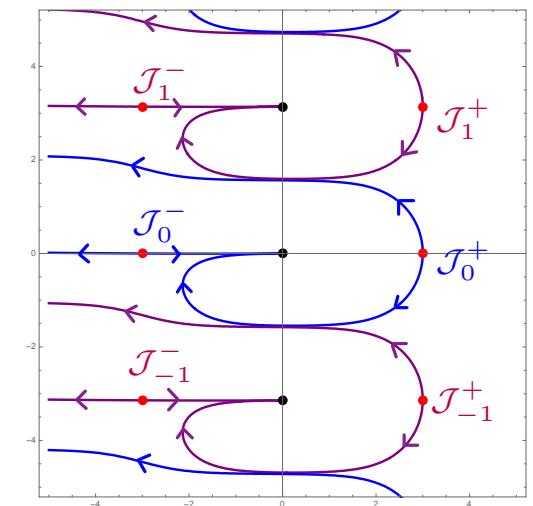
- The EOM for $a(r)$ is $d^2a/dr^2 - N^2a = 0$
- A solution subject to boundary conditions $a(0) = 0, a(1) = a_1$ is

$$\bar{a}^{(N)}(r) = \frac{a_1}{\sinh N} \sinh(Nr)$$

- The path integral is approximated by

$$\mathcal{Z} \simeq \int_C dN e^{-I[N]}, \quad I[N] = -\frac{\ell_{\text{AdS}}}{2G} (N + a_1^2 \coth N)$$

- The contour for N is given by a set of **Lefschetz thimbles**



Lefschetz thimbles

- How to determine Lefschetz thimbles

1. Compute the **saddle points** by solving $\partial I[N]/\partial N = 0$

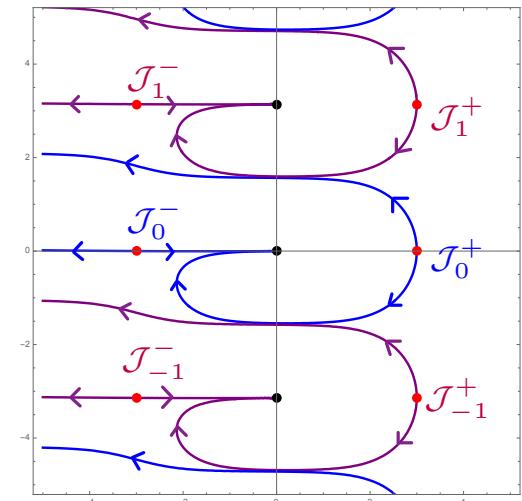
$$N_n^+ = n\pi i + \ln \left(a_1 + \sqrt{a_1^2 + 1} \right), \quad N_n^- = n\pi i - \ln \left(a_1 + \sqrt{a_1^2 + 1} \right)$$

2. Find out **steepest descents** from the saddle point satisfying $\text{Im } I[N] = \text{const.}$ as denoted by \mathcal{J}_n^\pm

- How to find the contour

1. The integral contour should be given by **the sum of Lefschetz thimbles**
2. We choose the contour which can be deformed from a natural contour, i.e., along the positive real axis

$$\mathcal{C} = \sum_{n=0}^{\infty} \mathcal{J}_n^+ - \sum_{n=1}^{\infty} \mathcal{J}_n^-$$



Evaluation of path integral

[Chen-YH-Taki-Uetoko'24; '24]

- Each contribution from the saddle point is

$$\mathcal{Z}_n^\pm \sim e^{\frac{n\pi i \ell_{\text{AdS}}}{2G}} (2a_1)^{\pm \frac{\ell_{\text{AdS}}}{2G}}$$

- For large a_1 , a series of contributions \mathcal{Z}_n^- vanishes
- The path integral is given by the sum as

$$\mathcal{Z} \sim \sum_{n=0}^{\infty} \mathcal{Z}_n^+ \sim \sum_{n=0}^{\infty} e^{\frac{n\pi i \ell_{\text{AdS}}}{2G}} \rightarrow \text{Reproduce the previous result}$$

- We can change the radial coordinate as

$$Nr \rightarrow R(r) = -n\pi i(1-r)^q + \ln(2a_1)r^q$$

- Reproduce the previous radius coordinate for $q = 1$
- Reproduce the geometry from ansatz for $q \rightarrow \infty$

