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Quantum gravity

* Gravity path integral
* Quantum gravity may be defined through the path integral formulation
e Path integral may converge when its integral contour is complexified
* What happens when metrices are complexified

* Complex metrices

* Examples
* Rotating blackhole in imaginary time
v No-boundary proposal for early universe [Hartle-Hawking’83]

* There would be too many complex saddles and it is unclear
which complex metrics should be integrated over




Allowable complex metrics

[Louko-Sorkin "97;Kontsevich-Segal '21;Witten '21]
* A complexified metric of S+
ds* = (34(0' (u)*du® + cos® O(u)dQ3)

* The universe begins from “nothing” at «w = 0 and evolves into dS,,; as © — oo
* There exists a family of complex spacetimes labeled by n

cosO(u=0)=0 == G(u=0)=(n+1/2)7 (n€Z) 4t = too
A criteria of D-dim. allowable complex metrics
Re ( detgg"/! ---giqquil...injl...jq) >0, 0<q<D
The cases with n=-1,0 are allowed, which corresponds to t=9

the Hartle-Hawking geometry



Complex metrices from dS holography

* Application of holography
* We examine gravity complex saddles via dS/CFT correspondence

e dS/CFT is less understood than AdS/CFT, for instance, due to fewer concrete
examples

° Higher—spin holography [Anninos-Hartman-Strominger’11]

Higher-spin gravity on dS, 3d Sp(N) vector model
at the classical limit at the large N limit

* Analytic continuation of duality between higher-spin gravity on AdS,
and 3d O(N) vector model [Klebanov-Polyakov’02]



The aim of this talk

* dS;/CFT, involving higher-spin gravity
[YH-Nishioka-Takayanagi-Taki '22; '22]

Higher-spin dS; gravity 2d coset model with
(=SL(N) CS theory) with @) | large imaginary
matters at the classical limit central charge

SU(N) x SU(N),
SU(N)k+1

* Derived from AdS; higher-spin holography (Gaberdiel-Gopakumar duality) via
analytic continuation
* Relevant complex metrices of dS; gravity
* Read off gravity saddle points from the exact result of dual CFT
* Determine the path integral contour in mini-superspace approach



The plan of this talk

* Introduction

» dS/CFT correspondence

e Dual CFT approach

* Mini-superspace approach
* Conclusion



dS/CFT correspondence



AdS/CFT correspondence

T
 Poincare coordinates (boundary at z = 0) o)
d—1
ds® = 6‘22—(218 (dz2 —dt* + Z(dzj)2> —_ ¢(2,7)
= z=0 Z
* Map between AdS bulk fields and CFT operators
AdS bulk fields CFT operators
o R O(z)
" " s N
* GKP-Witten relation 98 [ <,Ulo(m")> Mgy (o ([ #000)) }

* Gravity scattering amplitudes <~ CFT correlation functions

Zaas 00z = 0.9) = én] = (o0 ( [ dho0n(2)0(0) ) )



dS/CFT correspondence

[Maldacena '03]

* Describe dS gravity via the wave functional
of universe

Vslh,én] = [ DyDoexpisiy.o I

with g =h,¢p = ¢g at t =t

* Wave functional <~ Generating functional
of correlation functions in dual CFT <

Correlators computed by

WUas[do] = <exp (/ ddx¢0(x)o($))> / dual Euclidean CFT




Gaberdiel-Gopakumar duality (AdS;)

[Castro-Gopakumar-Gutperle-Raeymaekers '12; Gaberdiel-Gopakumar '12]
(see [Gaberdiel-Gopakumar ’11] for original proposal)

* A version of Gaberdiel-Gopakumar duality

Higher-spin AdS; gravity :

: 2d coset model with SU(NV)x x SU(V),
~SL(N) CS th th )
( (V) eory) wi large central charge SU(N) k1

matters at classical limit

Spins of gauge fields s =2,3,..., N
* The simplest case with N=2

Einstein gravity on AdS; with | | 2d coset model with  SU(2), x SU(2),
matters at classical limit large central charge SU(2)k11

Describes analytic continuation of Virasoro-
minimal model, which reduce to Liouville theory

[Creutzig-YH "21]



Map of parameters

* A version of Gaberdiel-Gopakumar duality

Einstein gravity on AdS; with ) 2d coset model with  SU(2); x SU(2),
matters at classical limit large central charge SU(2) k41

 Comparison of symmetry algebra

* Near AdS; boundary, Virasoro symmetry * The central charge of the coset is
appears with central charge 6
[Brown-Henneaux '86] c=1- (k +2)(k + 3)

 To have large central charge, we set




Analytic continuation: AdS; = dS,

[YH-Nishioka-Takayanagi-Taki ’22; '22]
* Replace /rq5 — —ilqs to move from AdS; to dS;
* Gaberdiel-Gopakumar duality becomes

Einstein gravity on dS; with 2d coset model with SU(2), x SU(2),
matters at classical limit imaginary central charge  SU(2)x41

* Compare central charges [Strominger’01]

6 . 3¢ 6
—1-— — _icle) o) — 28dS : 9
c=1 205 3) i\, c S 0 |y —3 Zc(g) | (’)(C(Q) )

 Compute the dual CFT partition functions at large central charge
—> agrees with gravity



Dual CFT approach



Liouville theory

 Action of Liouville theory

St 1 d*z\/g lagb(?qb + %zqs +7ue?®? | Q=b+1/b

:27'('

* Large central charge limit is realized by

1
c=1460+b71)? = 2=y

* Wave functional related to CFT 2-pt. function
* = ab kept finite (and set n — 0 for simplicity)

(Vo (21)Va(22)) = /D¢6—SL€2a(¢(Z1)+¢(z2))




Semi-classical saddles for CFT 2-pt. function

[Harlow-Maltz-Witten '11]
e If 69 solves the EOM 80¢. = 2rub%e®:, then so does

o) = ¢ + 2min (¢e = 2b9)
==) The integer n labels distinct complex saddles of Liouville theory

* Semi-classical 2-pt. function read off from its exact result

— 1 ) 2
Y T = g e(2n DT/ for Re 572 > 0
e T _ 67'('2

n=0,1,...00

lim  (Va(21)Va(z2)) x —

n=ab—0 g g g
67m/b _6—7T’L/b _ Z (_1)n6(2n—|—1)7m/b for Re b_2<0

L n=—1,0




Semi-classical saddles of dS gravity

* dS; wave functional obtained as a suitable limit of the 2-pt. function

Uas = lim  (Vo(21)Va(22))

n=ab—0

* Parameter b expressed in gravity variables

pr_ 0 18 e 13

_;oas m=) Reb ?<0
6 6 4G 6

* Wave functional decomposes into a sum over saddles

(") 1o (2n + 1)mlas
U ~ _ 1) Sen/2+iL S(n) _
ds Z (—1)" ) GH 20

* Pick saddle points with n=-1,0 = consistent with KSW-allowable criteria

[Chen-YH-Taki-Uetoko '23;’23]



Mini-superspace approach



Mini-superspace approach

 Compute path integral for wave functional with
Einstein-Hilbert action

U = /Dge_l[g]
e Reduced model with the ansatz for the metric
ds® = U535 [N(7)%dm* + a(7)%d¥*] (0<7<1)

* The path integral reduce accordingly
* Fixa gauge N(7) = N and integrate over N along a

contour
- NIl — (=] —
2(;/0 i <N2 (dT) v

\IJ:/CdN/Da(T)eXp

cf. [Feldbrugge-Lehners-Turok’17]



Integration over scale factor

* EOM for a(t): d?a/dr? + N?a =0
 Solution subject to boundary conditions
a(0) =0,a(1) = ay

a™M(r) =

“ sin(NT)

sin

* The path integral is approximated by

1 1/2 las
U~ [ dN e 1INl IINT = —=22(N +a?cot N
[an (i) N =~ S (N 4 ot )

* The contour for N is given by a set of
Lefschetz thimbles




Lefschetz thimbles

e How to determine Lefschetz thimbles
1. Find saddle points solving 9I[N]/ON = 0

1
NﬂTL:(m—|—5>7r+iln(a1—|—\/a%—l),
_ Ly . [ 9
N, = m—|—§ m —in{a; +1/a7 —1

2. Determine steepest descents 7= from each saddle
satisfying Im I[N] = const.
3. Choose the integral contour as a sum of relevant thimbles

4 \\

\—-e
, ‘gﬁ\ j j 1 j 0+ j 1+
T, T Ti I

(gdS — las + 1€, € > 0)



Integral contour

e Each saddle contributes

(2m—|—1)7‘&‘£ds
4G

<
2G

N—"
H-
| S
Qs
H-

+
U ~e
* For large a,, a series of contributions ¥,, vanishes

* Dual CFT suggests the form of wave functional

U ~ (6 iG — e 4G )(2a1)" 2G

* We pick the contour reproducing the dual CFT result

[ C:_jj1+j0_—|—j0+ ]

[Chen-YH-Taki-Uetoko '24;’24]

4 \\

\—-e
, ‘gﬁ\ j j 1 j 0+ j 1+
T, T /S I

(gdS — las + 1€, € > 0)



Conclusion



Summary & Future problems

* Summary
e Gravity path integrals over complex metrics provide a useful framework
* Holography tells us which complex saddles are realized

* We applied the dS/CFT to 3d gravity and fix the path integral contour in mini-
superspace approach

* A similar analysis can be carried out for AdSs gravity [Chen-YH-Taki-Uetoko’24;'24]

* Future problems
* Extend these ideas beyond 3d pure gravity and explore higher-dim. cases
* Examine more generic geometries, such as, blackhole, wormhole etc.
e Consider correlation functions and/or the insertion of Wilson lines



Appendix



Semi-classical saddles of AdS gravity

* The partition function for AdS; can be described by the limit of 2-pt.

function
Zpaas = lim (Vi (21)Va(22))

n=ab—0

* The parameter b can be written in terms of gravity parameters as

o_c BB 0 faes 13 p
b—6 6+ _4G 6+ —) Reb“ >0

* The partition function for AdS; can be decomposed as

£ads

ZAds ~ E 0,2y, ©,=e2¢"""

Which geometry corresponds to the saddle point labeled by
n and why the sum is taken over n=0,1,...”



Geometry corresponding to saddle

e Ansatz for the geometry
ds® = 03 15(0' (v)?du® + sinh? O(u)d?)

* We assume that the manifold truncates at ¢y = () and approaches to Euclidean AdS;as
* There exists a family of complex geometry labeled by n U — OO

sinhf(u=0)=0 == H(u=0)=nmwi(n€Z)

 Geometrical interpretation
O=nmi(l—u) (0<u<l),fd=u—1(1<u)

* The geometry is Euclidean AdS;for u > 1, and a three-sphere with three time
directionsfor0 <u <1

* The three-sphere can be generated by a large gauge transformation in the Chern—
Simons formulation of gravity, and the associated phase factor can be reproduced



Mini-superspace approach

cf. [Feldbrugge-Lehners-Turok’17;Di Tucci-Heller-Lehners’20]

* We want to compute path integral for AdS; partition
function with /[g] as Einstein-Hilbert action

* We consider a reduced model with the following
ansatz of metric

ds* = 13 49 [N(r)2d7“2 + a(T)QdQﬂ 0<r<1)

* The path integral reduce to r=1 r=0

z /dN/D()e —EAdS/ldN Lda oy
~ X —
; wrex og ), i\ N T

« We set N(r) = N by fixing a gauge and integrate over N
along a contour C



Reduce to one-parameter integration

* The EOM for a(r) is d*a/dr* — N?a =0

* A solution subject to boundary conditions
a(0) =0,a(l) =aq is
a

—(N) _ 1 .
a‘'’(r) — sinh(Nr)

* The path integral is approximated by

/
Z ~ / dNe 1IN JIN] = —g—gf(N + a2 coth N)
C

* The contour for N is given by a set of
Lefschetz thimbles

\

N e o ~ - ﬁ
X N VS AN || A} /
[S—
RO %




Lefschetz thimbles

* How to determine Lefschetz thimbles
1. Compute the saddle points by solving 0I[N]/ON =0

qu:nm%—ln(al%—\/a%%—l), Nn_:nﬂ'i—ln(al%—\/a%%—l)

2. Find out steepest descents from the saddle point satisfying
Im I[N] = const. as denoted by 7=

e How to find the contour

I S N

T

o \.70\ i
T,

1. The integral contour should be given by the sum of Lefschetz thimbles

2. We choose the contour which can be deformed from a natural contour, i.e.,

along the positive real axis
C= Z’ZO:O jrj_ o 22021 jn_




Evaluation of path integral

[Chen-YH-Taki-Uetoko’24;’24]

* Each contribution from the saddle point is

nmilaAds £Aads
22? ~ e 2G (2al)i 2G

* For large a,, a series of contributions Z_~ vanishes
* The path integral is given by the sum as

e |
T-
‘“\ﬁﬁg;__ 7
Z jOT +
7=

nmil
~N Z, T~ —20" === Reproduce the previous result
P

* We can change the radial coordinate as
Nr — R(r) = —nmi(1 — r)? + In(2a7 )r?

* Reproduce the previous radius coordinate for ¢ =1
* Reproduce the geometry from ansatz for ¢ — oo

In (2&1)

<
|

—NTTe



