

Heterotic strings and invariants of 2d $\mathcal{N} = (0,1)$ SQFTs

Kazuya Yonekura (Tohoku University.)

Mainly based on

- [2508.04916] with [Y. Tachikawa](#)

Also

- [2207.13858]
- [2302.07548] with [M. Yamashita, Y. Tachikawa](#)
- [2411.04344] with [J. Kaidi, Y. Tachikawa](#)

Introduction

String theory is believed to be “unique” in some sense.

In what sense and how?

I focus on **heterotic string theory**.

Introduction

String theory is described by
a **2dim. worldsheet theory**.

$$S = S_{\text{target}} + S_{\text{internal}}$$

$$S_{\text{target}} = \int d^2\sigma \frac{1}{4\pi\alpha'} (\partial_i X^\mu \partial^i X_\mu) + \dots$$

S_{internal} : **internal theory**

**internal
theory**

D -dimensional target
space (e.g. \mathbb{R}^D)
 X^μ ($\mu = 1, \dots, D$)

Target space physics depends on the internal theory.

Introduction

The internal theory of a heterotic string theory with D -dimensional target space is:

A 2d $\mathcal{N} = (0,1)$ superconformal field theory T
with chiral central charge $2(c_R - c_L) = -22 - D$

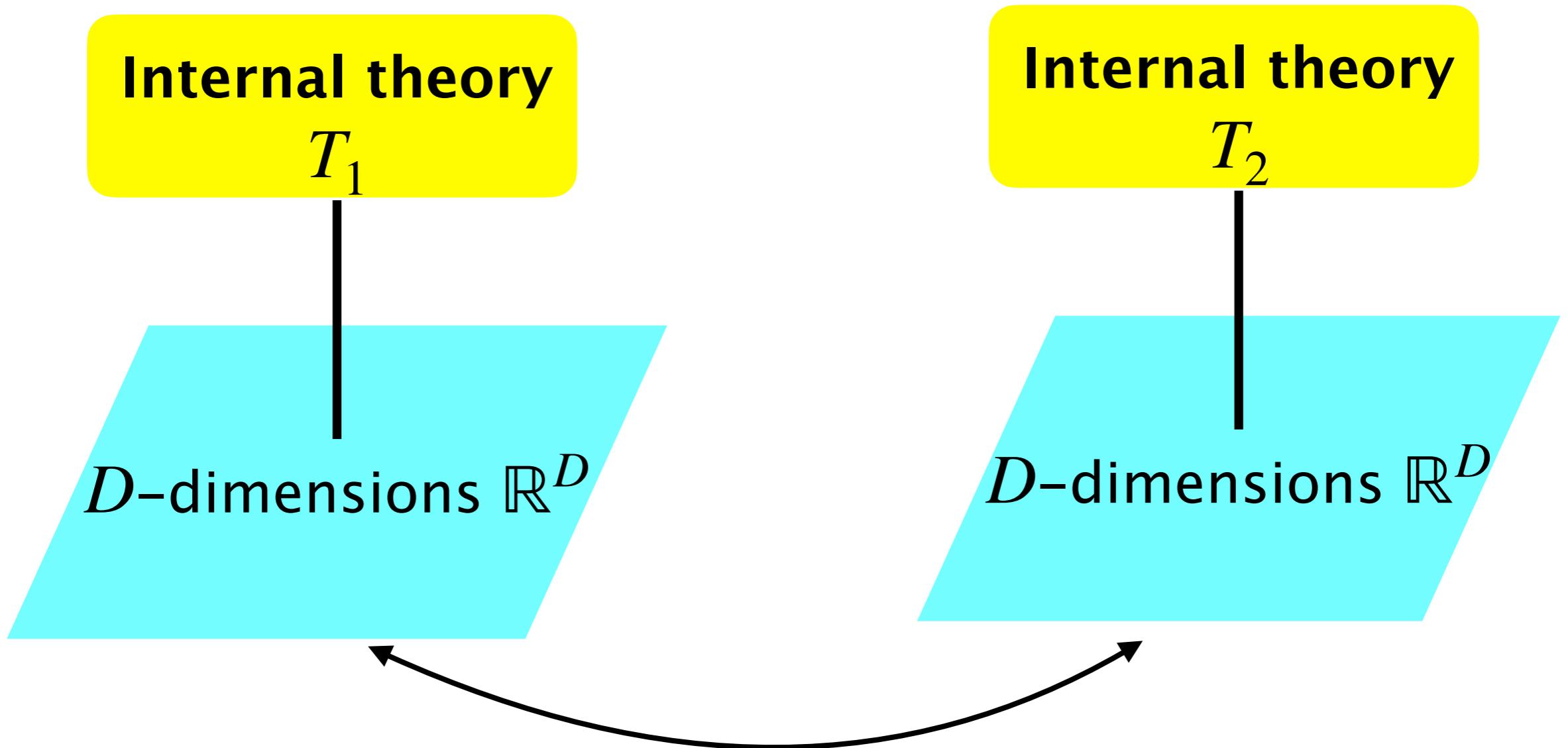
For a given D , there are many such internal theory T .
Not unique at all.

Example

In $D = 10$, T can be the current algebra theory for either $e_8 \times e_8$, $so(32)$, $so(16) \times so(16)$, ...

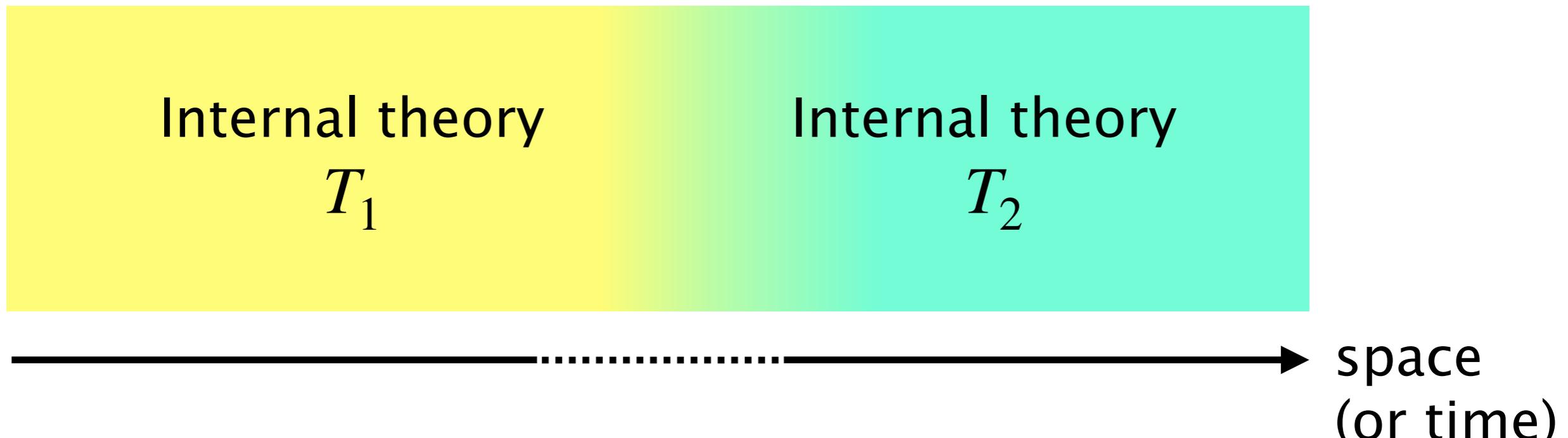
Introduction

If there are two different theories T_1 and T_2 ,
it seems that they form just independent universes.



Introduction

Different theories are “continuously connected” with each other?



If so, they are parts of a big single theory.

This “connectedness” is related to the concept of **bordism** (or cobordism). The details later.

Introduction

The aim of this talk:

to discuss the concept of bordism, and some (or possibly all) **bordism invariants** of 2d $\mathcal{N} = (0,1)$ supersymmetric quantum field theories (SQFTs)

Contents

1. Introduction
2. **Bordism**
3. Bordism group
4. Bordism invariant
5. Summary

Bordism

There are different levels of bordism.

- Manifold
- SQFT (today's main topic)
- Full quantum gravity

Level 1: Manifold

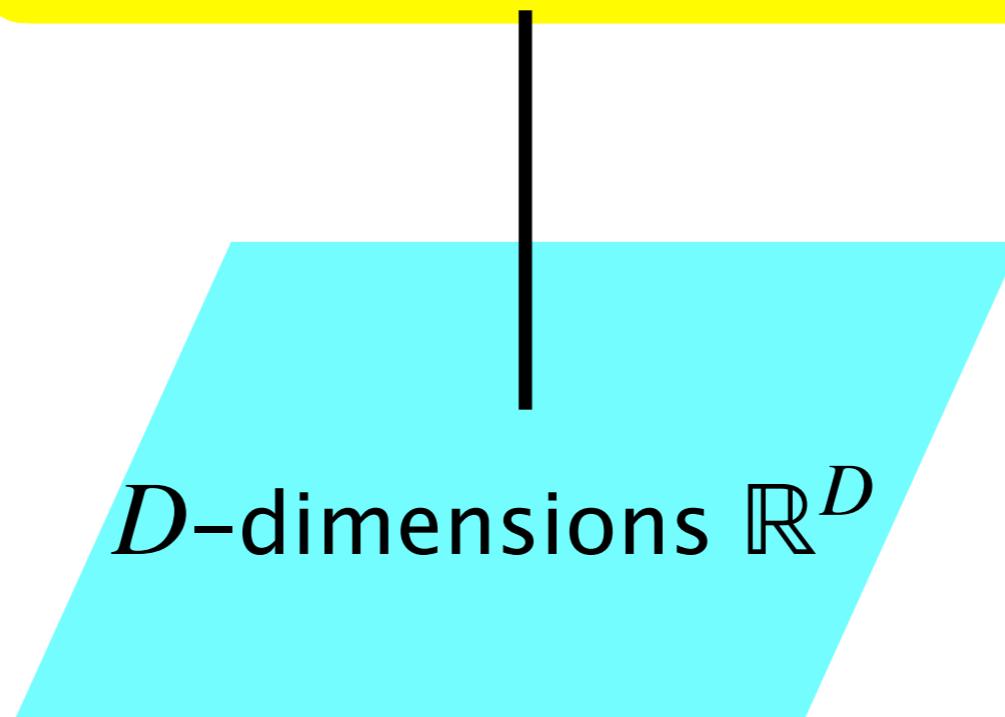
The concept of bordism of manifolds has been very important in nonperturbative anomalies and topological structures of QFTs.

[too many references by mathematicians & physicists]

However, I talk about it in a different (but related) context:
internal manifolds for string compactification.

Manifold

$d = (10 - D)$ dim.
internal manifold M

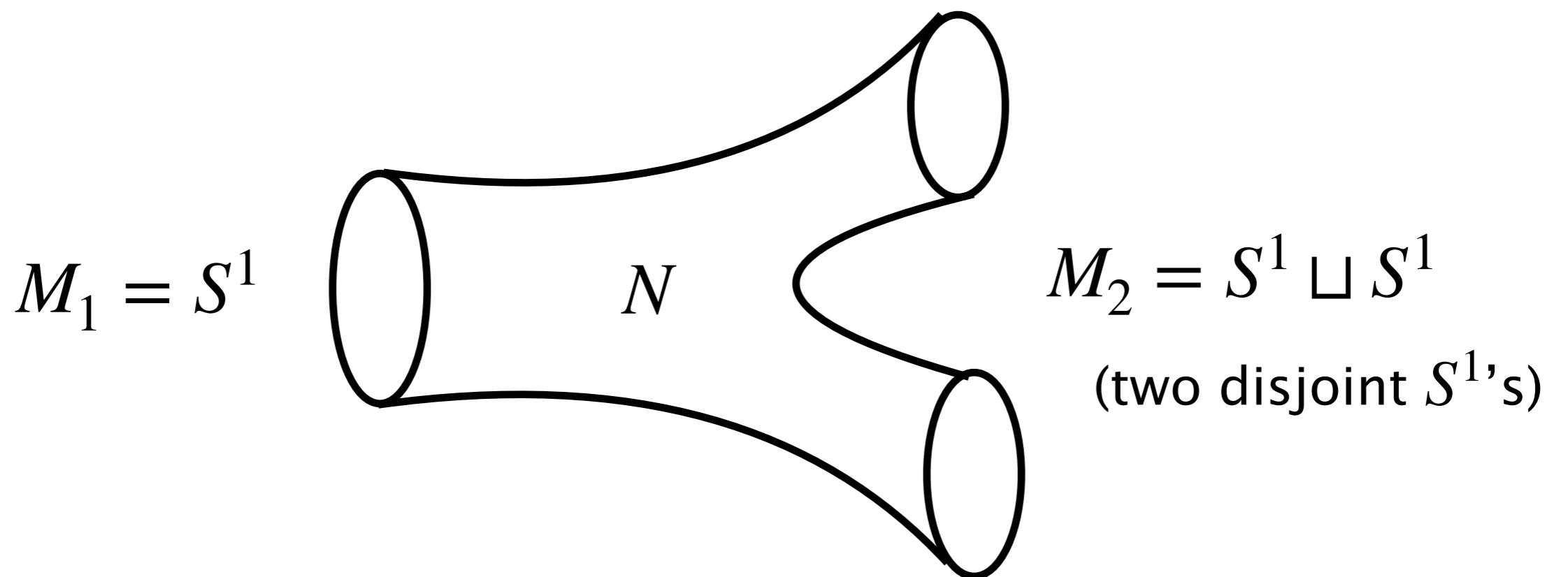


There are various possibilities for the internal manifold.

Calabi–Yau manifolds are famous, but we can consider more general cases.

Bordism of manifolds

Example of bordism



$M_1 = S^1$ and $M_2 = S^1 \sqcup S^1$ are different manifolds, but a **transition** between them by a higher dim. N is possible.

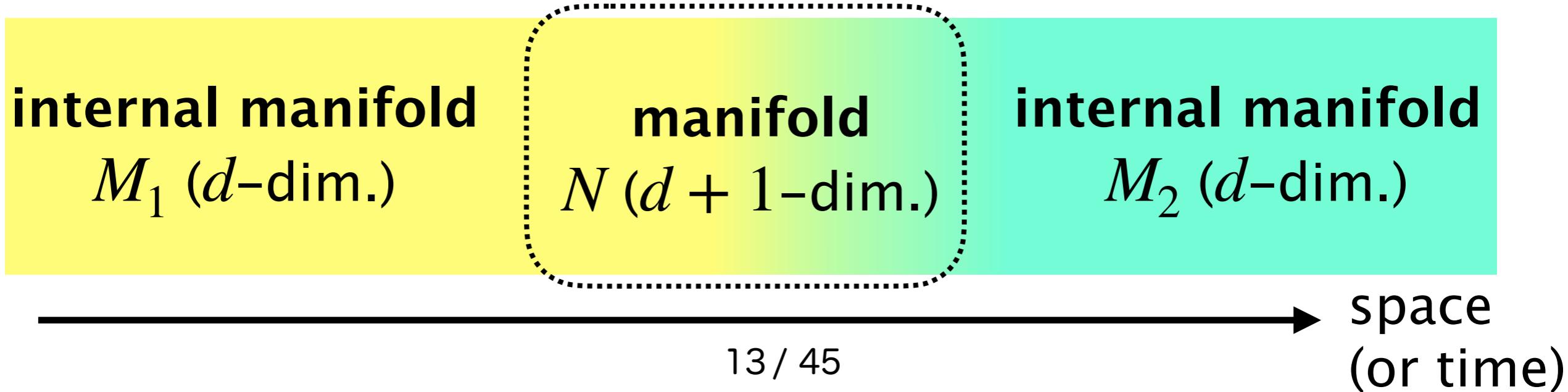
Bordism of manifolds

- M_1, M_2 : d -dim.
- N : $(d + 1)$ -dim. realizing transition between M_1 and M_2 .

In this situation, we say that

- N is a **bordism** between M_1 and M_2
- If N exists, M_1 and M_2 are **bordant**, and denote

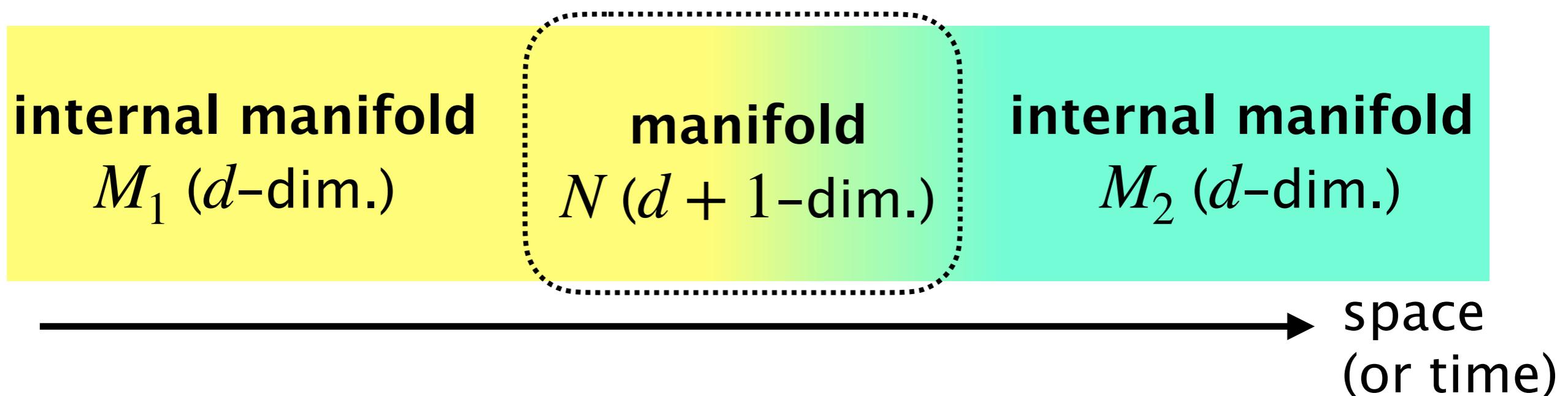
$$M_1 \sim M_2$$



Remark

The transition happens along a space (or a time) direction.

Therefore, the manifold N representing the bordism has dimension $d + 1$, where $+1$ is due to the space (or time) along which the transition happens.



Level 2: SQFT

In string theory, internal theories are not restricted to manifolds. More general **2dim. supersymmetric quantum field theories (SQFTs)** are possible (in NSR formulation).

A manifold corresponds to a 2dim. sigma model.

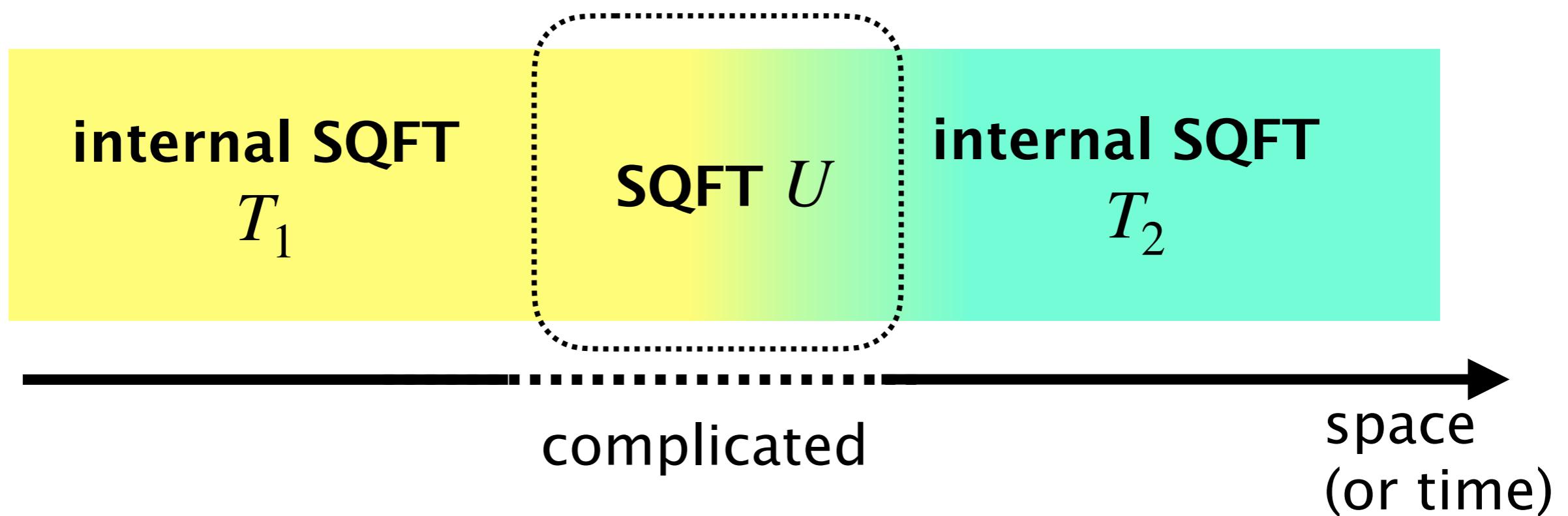
manifold M
coordinates X^μ
metric $G_{\mu\nu}$

2dim. sigma model with target M
$$S = \int d^2\sigma \frac{1}{4\pi\alpha'} G_{\mu\nu}(\partial_i X^\mu \partial^i X^\nu) + \dots$$

Remark: I will talk about general 2d $\mathcal{N} = (0,1)$ SQFTs without assuming conformal invariance.

Bordism of SQFTs

We can ask whether the following is possible:



- T_1, T_2 : SQFTs
- The intermediate region U is also some SQFT.

Bordism of SQFTs

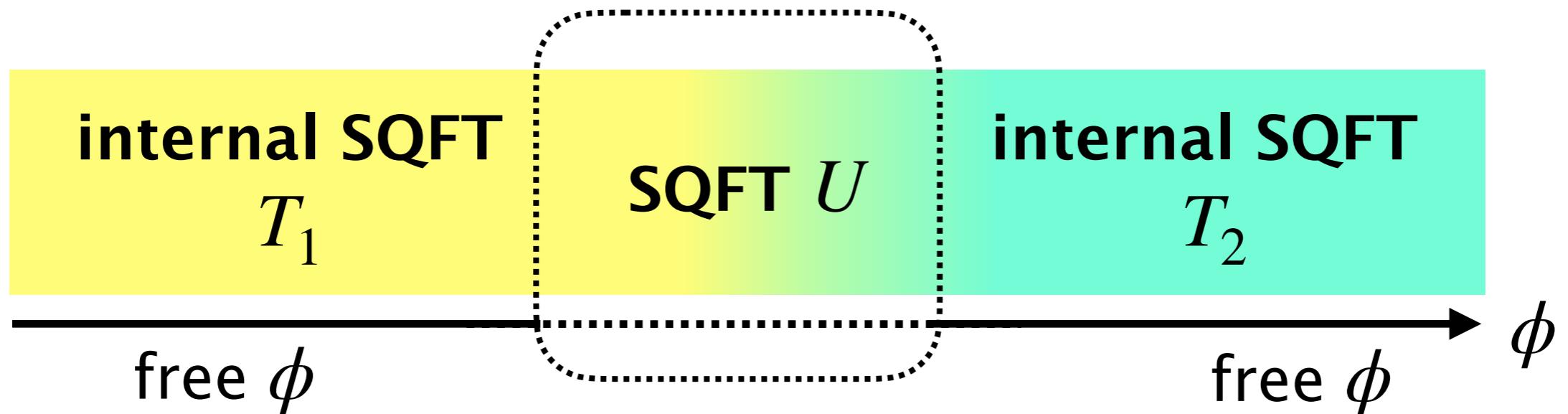
Example

Heterotic string theories compactified on a circle S^1

- These two theories are different at the level of supergravity.
(Gauge groups are different: $e_8 \times e_8$ or $so(32)$.)
- However, they are bordant at the level of SQFTs.
(They are T-dual: nonperturbative effect of α')

$$e_8 \times e_8 \text{ on } S^1 \sim so(32) \text{ on } S^1$$

Definition of bordism



Suppose there exists a configuration U such that

- In the far left (right), the theory looks like $T_1 \times \mathbb{R}$ ($T_2 \times \mathbb{R}$). (\mathbb{R} means a free sigma model ϕ with target \mathbb{R} .)
- The intermediate region may be complicated.

Then we regard T_1 and T_2 to be equivalent (bordant),

$$T_1 \sim T_2 \quad [\text{Gaiotto,Johnson-Freyd,Witten,2019}]$$

Level 3: Full quantum gravity

Cobordism conjecture

[McNamara,Vafa,2019]

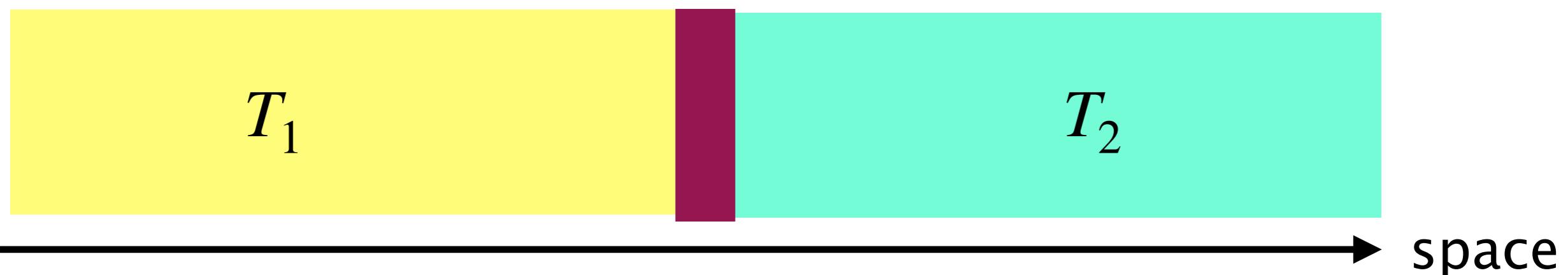
Any theory can be connected to any other, in the sense of bordism, in full quantum gravity.

- This is **not** satisfied at the level of internal manifolds, by various results on bordism groups of manifolds.
[many mathematicians & physicists]
- This is also **not** satisfied at the level of internal SQFTs, by some results that I will discuss later.

Applications

Cobordism conjecture has interesting applications.

Suppose T_1 and T_2 are **not bordant as SQFTs**.



- There is no smooth configuration between them.
- However, there must be some configuration in full quantum gravity that connects them.

→ Existence of a **new type of codimension-1 brane**

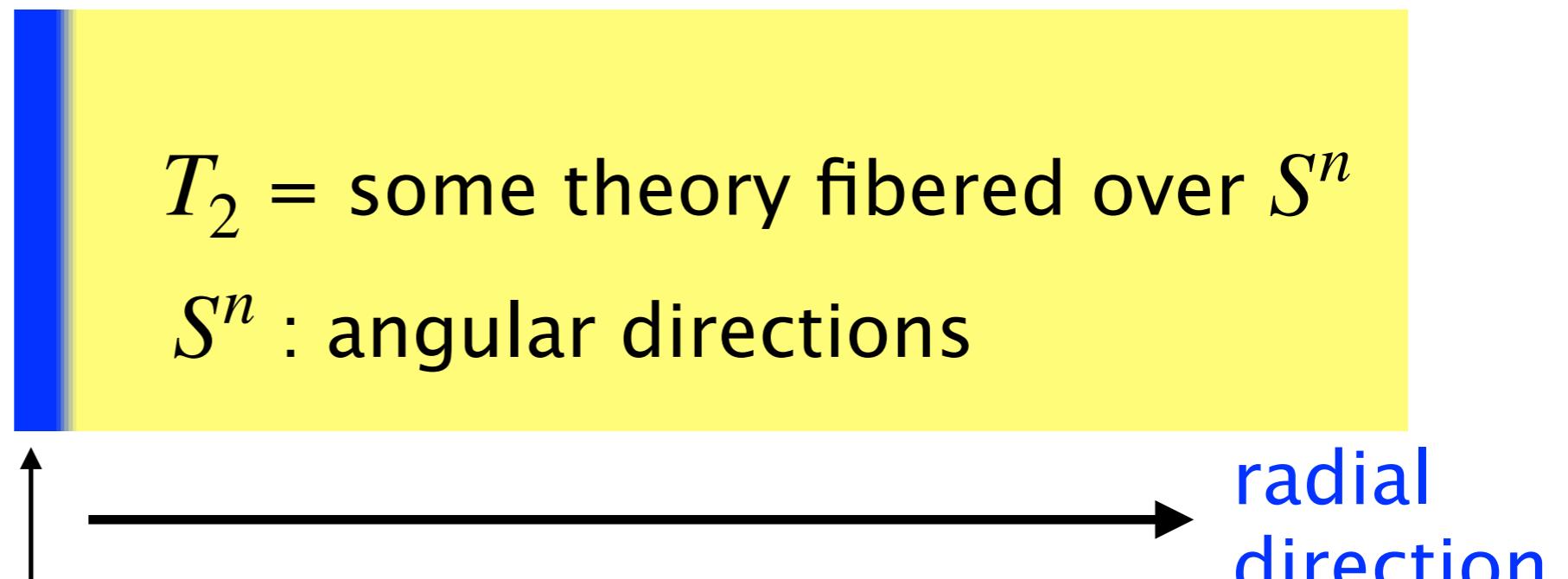
[McNamara, Vafa, 2019]

[Heckman, McNamara, Parra-Martinez, Torres, 2025]

Applications

Branes of more general codimensions are also predicted.

$T_1 = \emptyset$:
Empty theory



[Dierigl,Heckman,Montero,Torres,2022]
[Kaidi-Ohmori-Tachikawa,KY,2023]
[Hamada-Ishige,2024]

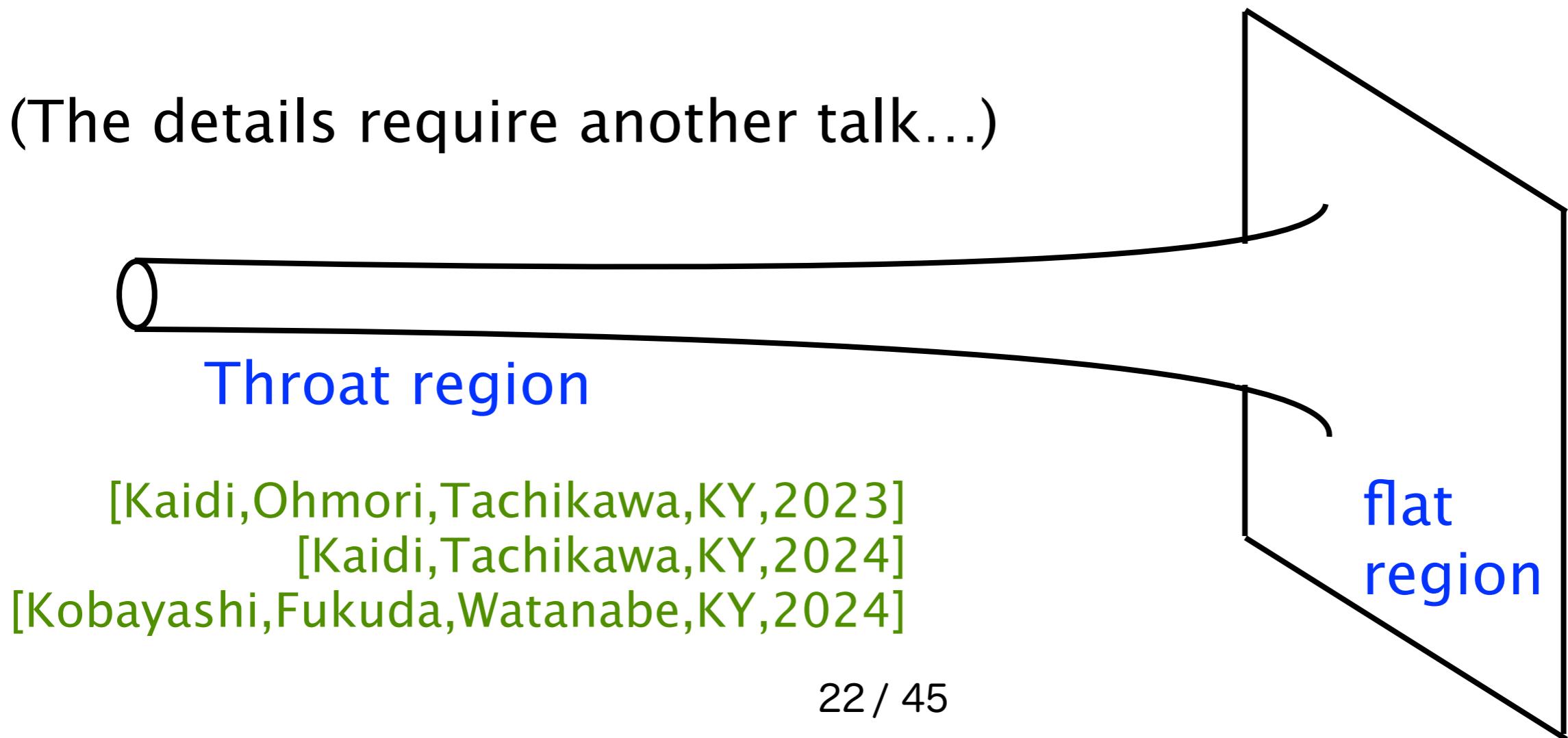
.....

Advertisement

Indeed, there are several evidences that there are
new nonsupersymmetric branes in heterotic strings.

- Black brane solutions with nontrivial gauge field fluxes.
- Exact worldsheet CFT for the throat region.

(The details require another talk...)



Contents

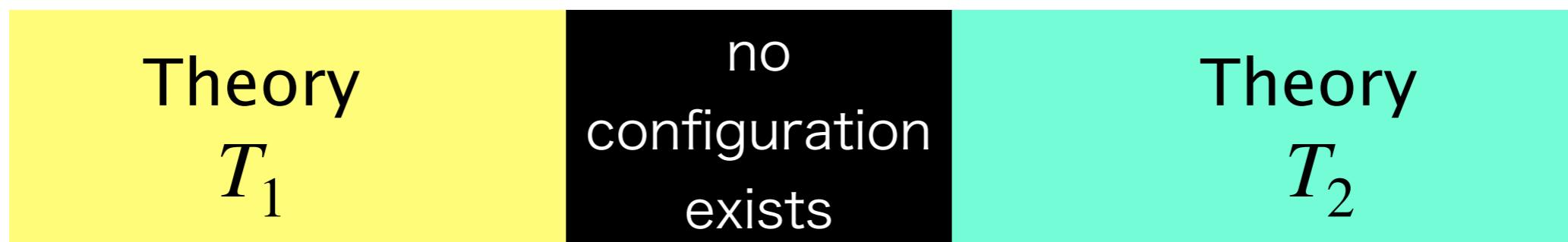
1. Introduction
2. Bordism
- 3. Bordism group**
4. Bordism invariant
5. Summary

Bordism groups

Define equivalence classes $[T]$:

$$T_1 \sim T_2 \implies [T_1] = [T_2]$$

If $[T_1] \neq [T_2]$, there is no configuration connecting T_1 and T_2 (at the level of SQFTs).



Equivalence classes form a group, called the **bordism group**.

Bordism groups

Bordism group : the set of equivalence classes

$$\text{SQFT}_d(\text{pt}) = \{[T]\}$$

$d = -2(c_L - c_R)$:
chiral central charge or gravitational anomaly of the 2d SQFT

If T is a sigma model whose target manifold is M ,
then $d = \dim M$.

(Please neglect (pt) : it has no meaning in this talk.)

Bordism of manifolds

Many bordism groups of manifolds (rather than SQFTs) are computed.

[many mathematicians & physicists]

Example: string manifolds (details omitted)

Bordism groups are denoted by $\Omega_d^{\text{string}}(\text{pt})$.

d	0,	1,	2,	3,	4,	...
$\Omega_d^{\text{string}}(\text{pt})$	\mathbb{Z} ,	\mathbb{Z}_2 ,	\mathbb{Z}_2 ,	\mathbb{Z}_{24} ,	0,	...

Bordism groups of SQFTs, $\text{SQFT}_d(\text{pt})$, are less known, but there is a **conjecture** about it.

Stolz-Teichner Conjecture

In pure mathematics, there is a generalized cohomology theory known as **topological modular forms (TMF)**, defined very abstractly.

I do not understand TMF! Please think that it is just an abelian group for each $d \in \mathbb{Z}$.

(Part of) Stolz-Teichner Conjecture

[Stolz, Teichner, 2004, 2011]

$$\text{SQFT}_d(\text{pt}) = \text{TMF}_d(\text{pt})$$

A table of groups for TMF

A table from [Tachikawa, Yamashita, 2021]
 which have taken the results from math.
 (for tmf, localized at prime 2)

- If the conjecture is true, there are many nontrivial bordism groups of SQFTs.

The only messsage

Something very deep
 is happeing, which
 we do not yet fully
 understand!

d	0	1	2	3	4	5	6	7	8	9
$\pi_d(\text{tmf})_{(2)}$	$\mathbb{Z}_{(2)}$	\mathbb{Z}_2	\mathbb{Z}_2		\mathbb{Z}_8				$\mathbb{Z}_{(2)}$	\mathbb{Z}_2
d	16	17	18	19	20	21	22	23	24	25
$\pi_d(\text{tmf})_{(2)}$	$\mathbb{Z}_{(2)}$	\mathbb{Z}_2	\mathbb{Z}_2		$\mathbb{Z}_{(2)}$				$\mathbb{Z}_{(2)}$	\mathbb{Z}_2
			\mathbb{Z}_2		\mathbb{Z}_8	\mathbb{Z}_2	\mathbb{Z}_2		$\mathbb{Z}_{(2)}$	\mathbb{Z}_2
d	32	33	34	35	36	37	38	39	40	41
$\pi_d(\text{tmf})_{(2)}$	$\mathbb{Z}_{(2)}^2$	\mathbb{Z}_2^2	\mathbb{Z}_2^2		$\mathbb{Z}_{(2)}^2$				$\mathbb{Z}_{(2)}^2$	\mathbb{Z}_2^2
	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_2					\mathbb{Z}_2	\mathbb{Z}_4
d	48	49	50	51	52	53	54	55	56	57
$\pi_d(\text{tmf})_{(2)}$	$\mathbb{Z}_{(2)}^2$	\mathbb{Z}_2^2	\mathbb{Z}_2^2		$\mathbb{Z}_{(2)}^2$				$\mathbb{Z}_{(2)}^3$	\mathbb{Z}_2^3
	$\mathbb{Z}_{(2)}$		\mathbb{Z}_2	\mathbb{Z}_8	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}_4			\mathbb{Z}_2
d	64	65	66	67	68	69	70	71	72	73
$\pi_d(\text{tmf})_{(2)}^3$	$\mathbb{Z}_{(2)}^3$	\mathbb{Z}_2^3	\mathbb{Z}_2^3		$\mathbb{Z}_{(2)}^3$				$\mathbb{Z}_{(2)}^3$	\mathbb{Z}_2^3
		\mathbb{Z}_2^2	\mathbb{Z}_2		\mathbb{Z}_2				$\mathbb{Z}_{(2)}$	
d	80	81	82	83	84	85	86	87	88	89
$\pi_d(\text{tmf})_{(2)}$	$\mathbb{Z}_{(2)}^4$	\mathbb{Z}_2^4	\mathbb{Z}_2^4		$\mathbb{Z}_{(2)}^4$				$\mathbb{Z}_{(2)}^4$	\mathbb{Z}_2^4
			\mathbb{Z}_2					\mathbb{Z}_2		
d	96	97	98	99	100	101	102	103	104	105

Contents

1. Introduction
2. Bordism
3. Bordism group
- 4. Bordism invariant**
5. Summary

Bordism invariant

The aim of the rest of the talk:

to discuss some (or possibly all) **bordism invariants** of
2d $\mathcal{N} = (0,1)$ SQFTs.

If you are not familiar with the concept of bordism, it may be helpful to think that I'm discussing **topological invariants**.

Bordism invariant

Let's consider a function $F(T)$ of SQFTs.

If $F(T)$ is such that

$$F(T_1) = F(T_2) \text{ when } T_1 \sim T_2 \text{ or } [T_1] = [T_2]$$

then it is called a **bordism invariant**.

Example for manifolds:

- At the level of manifolds, Atiyah–Singer index of the Dirac operator is an example of bordism invariants.
- Its generalization to supersymmetric quantum mechanics is the Witten index.

Basic example: Elliptic genus

The most basic bordism invariant of SQFTs is the **elliptic genus**.

$$I_T = \text{Tr}(-1)^F q^{H_L} \bar{q}^{H_R} \quad [\text{Witten, 1988}]$$

$H_L = \frac{1}{2}(H + P)$, $H_R = \frac{1}{2}(H - P)$: left and right Hamiltonian

$\mathcal{N} = (0,1)$ **supercharge** Q satisfies $H_R = Q^2$.

$q = e^{2\pi i \tau}$: I_T is the **partition function on T^2** with complex modulus τ and odd spin structure.

The elliptic genus is known to be a bordism invariant (or topological invariant if you like).

Bordism invariants

In addition to the elliptic genus, there are other bordism invariants. I'm going to sketch them.

- Mod-2 elliptic genus

[Tachikawa, Yamashita, KY, 2023]

- Secondary invariant

[Gaiotto, Johnson–Freyd, 2019]
[KY, 2022]

- New invariant

[Tachikawa, KY, 2025]

but some computations already in

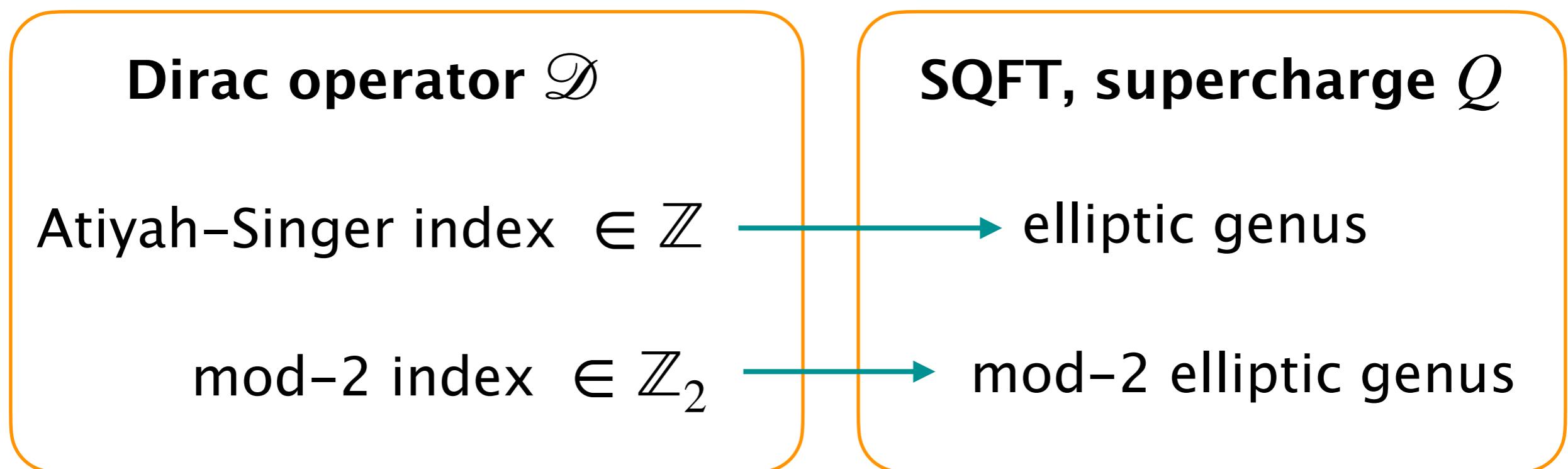
[Tachikawa, Zhang, 2024]
[Kaidi, Tachikawa, KY, 2024]

Remark: I will not discuss the details. I only give a sketch.

Mod-2 Elliptic genus

First I discuss **Mod-2 elliptic genus**.

It may be helpful to have in mind the analogy:



Basic idea

Dirac operator and supercharge are analogous.

Mod-2 Elliptic genus

Definition of mod-2 elliptic genus

$\mathcal{H}_{Q=0, P=P_0}$: the subspace of the Hilbert space in which $Q = 0$ (zero mode) and $P = P_0$ (P : momentum).

$$I^{\text{mod}-2} = \sum_{P_0} q^{P_0} \dim \mathcal{H}_{Q=0, P=P_0} \pmod{2}$$

(formal Laurent series with \mathbb{Z}_2 coefficients)

(Remark: We may need to divide $\dim \mathcal{H}$ by 2 in some cases.)

It is possible to show that the dimension mod 2 is bordism (or topological) invariant in some cases.

Mod-2 Elliptic genus

Example

For the S^1 sigma model with periodic spin structure, it turns out that

$I_{S^1}^{\text{mod}-2} = \eta(\tau)^{-1}$: coefficients of q expansion reduced modulo 2

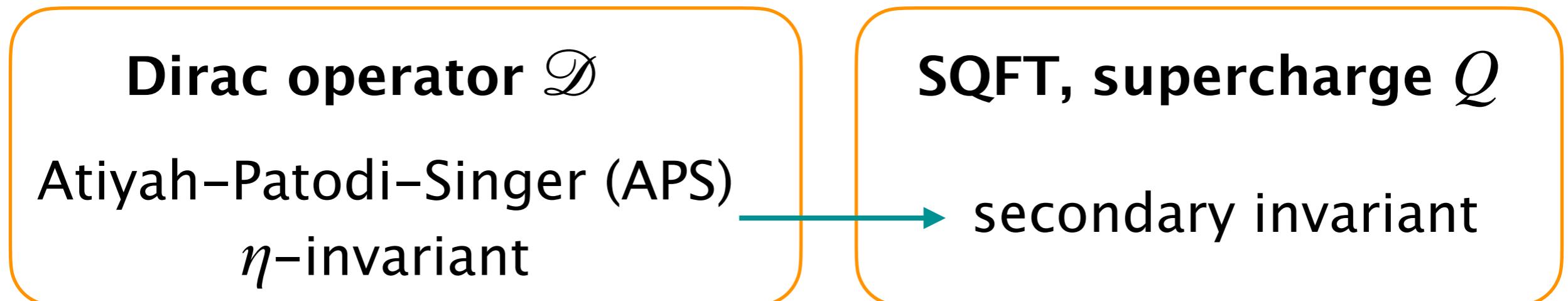
$\eta(\tau)$: Dedekind eta function.

The S^1 sigma model with periodic spin structure generates a bordism group \mathbb{Z}_2 .

Secondary invariant

Next, I discuss **secondary invariant**.

It may be helpful to have in mind the analogy:



APS η -invariant of Dirac operators \mathcal{D} on $(d + 1)$ -dim. closed manifolds is known to be relevant for anomalies of d -dim. fermions.

[Alvarez–Gaume, Pietra, Moore, 1985]

[Witten, 1985, 2015]

Idea

We want an analog of the APS η by replacing $\mathcal{D} \rightarrow Q$.

Secondary invariant

The analogy to Dirac operators is not straightforward and I present the final answer for the secondary invariant.

$$\eta = \int_F d^2\tau \frac{\eta(\tau)^3}{2(\text{Im } \tau)^{1/2}} \langle Q \rangle + \dots \pmod{\mathbb{Z}}$$

Important points:

- $\langle Q \rangle = \text{Tr } q^{H_L} \bar{q}^{H_R} Q$: expectation value of the supercharge Q on T^2 (complex modulus τ)
- Integration region F :
fundamental region of $SL(2, \mathbb{Z})$ on the τ -plane

(Remark : more generalization is necessary, details omitted)

Secondary invariant

Example

For S^3 sigma model with unit 3-form flux of the B field

$$\int_{S^3} H = 1$$

(or in other words Wess-Zumino-Witten term of $SU(2) \simeq S^3$) it turns out that

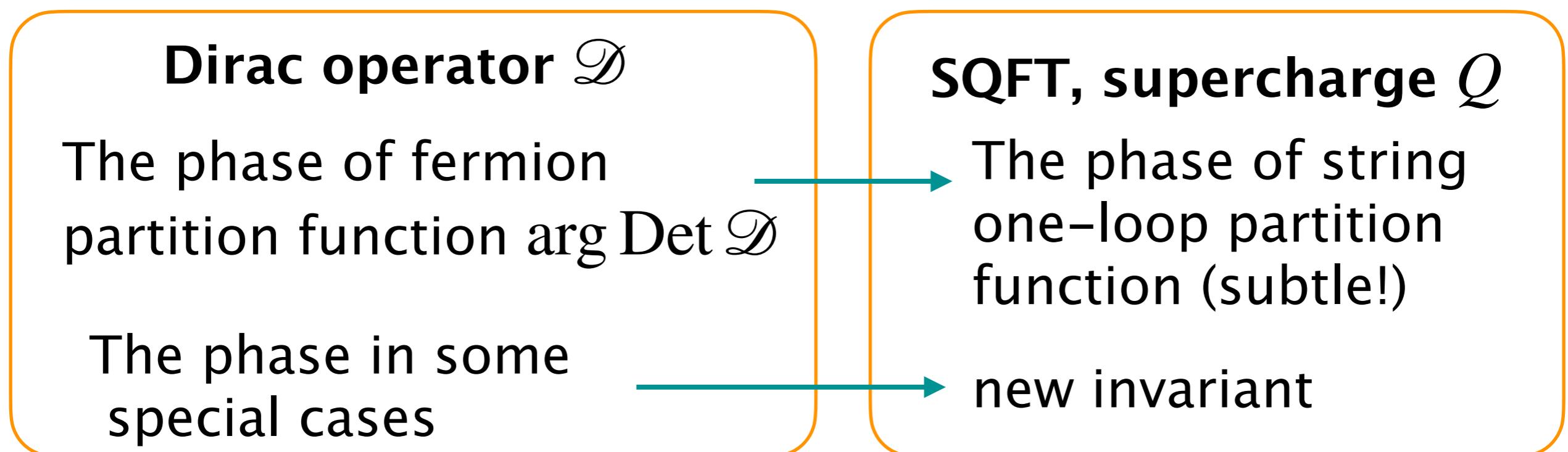
$$\eta(S^3_{H=1}) = \frac{1}{24} \pmod{\mathbb{Z}}$$

The $S^3_{H=1}$ generates a bordism group \mathbb{Z}_{24} .

New invariant

Finally I discuss a **new invariant**.

It may be helpful to have in mind the analogy:



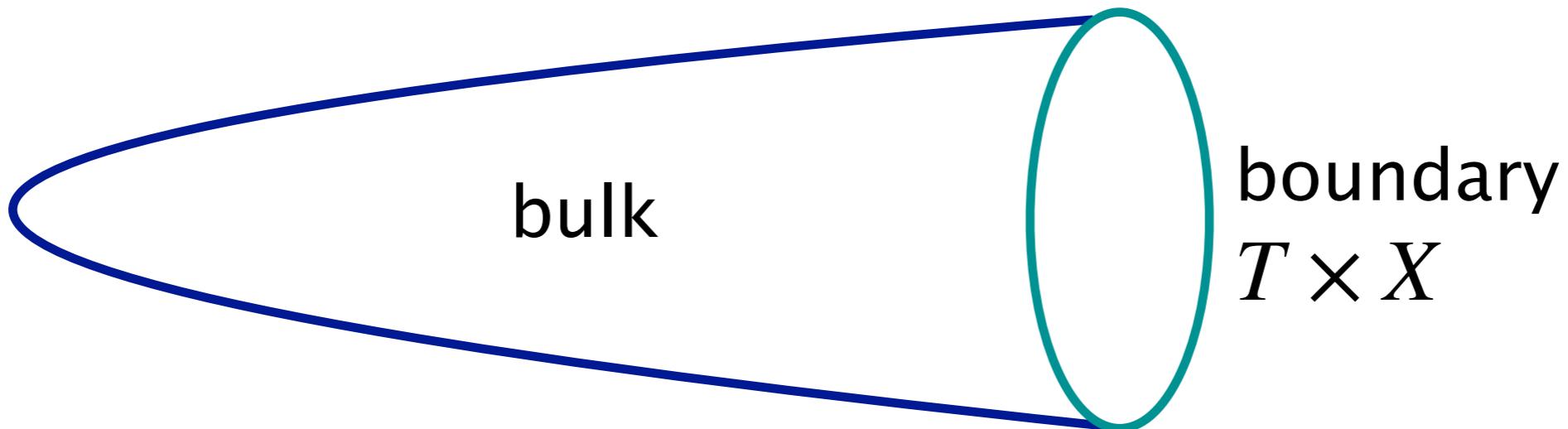
The phase of the fermion partition function is determined by (a physical realization of) **Dai-Freed theorem, using the η -invariant**.

[Witten, 1999, 2015]
[KY, 2016]
[Witten, KY, 2019]

New invariant

Let's consider a product of SQFTs, $T \times X$: imagine

- T : internal theory
- X : (Euclidean) target space sigma model.



New invariant (pairing)

$$\mathcal{W}(T, X) = \eta(\text{bulk}) \pmod{\mathbb{Z}}$$

Claim: it is a bordism invariant under some conditions.

(Remark: there are various details which I completely omit.)

New invariant

Example

$S^3_{H=1}$: the S^3 sigma model with unit 3-form flux.

We take

- Theory $T = e_7 \times e_7$ current algebra theory at level 1.
- Theory $X = S^3_{H=1} \times S^3_{H=1}$

It turns out that the invariant is given by

$$\mathcal{W}(T, X) = \frac{1}{2} \pmod{\mathbb{Z}}$$

It shows that both T and X are nontrivial.

This example appears in a **non-SUSY heterotic brane!**

Contents

1. Introduction
2. Bordism
3. Bordism group
4. Bordism invariant
5. Summary

Summary

- The concept of bordism can be defined in SQFTs.
- It has applications to string theory and new branes. It also has relations to topological modular forms.
- In addition to the elliptic genus, we have the mod-2 elliptic genus, secondary invariant and a new invariant. They are constructed by using the analogy between supercharge and Dirac operator.

Perspective

Very deep something which we do not fully understand!

