

Towards a Hamiltonian Framework for String-Inspired Nonlocality

Wei-Hsiang Shao (RIKEN iTHEMS)

Based on [\[2412.02577\]](#)

with Chih-Hao Chang, Pei-Ming Ho, I-Kwan Lee
(Natl. Taiwan U.) (Natl. Taiwan U.) (UCSB)

KEK Theory Workshop 2025

Stringy Nonlocality

- In **string field theory**, fundamental interactions (splitting and joining of strings) are **nonlocal**. [Witten ('85); Zwiebach ('92)]
- This nonlocality in the worldsheet moduli space manifests as infinitely many spacetime derivatives $e^{\ell^2 \partial^2/2}$ in the vertices. ($\ell \sim$ string length $\sqrt{\alpha'}$)

$$S[\phi_a] = \int d^D x \left[\frac{1}{2} \sum_a \phi_a (\partial^2 - m_a^2) \phi_a - \sum_{\{a_i\}} \lambda_{a_1 \dots a_n} \tilde{\phi}_{a_1} \dots \tilde{\phi}_{a_n} \right]$$

$$\tilde{\phi}_a \equiv \exp(\ell^2 \partial^2/2) \phi_a$$

Stringy Nonlocality

- In **string field theory**, fundamental interactions (splitting and joining of strings) are **nonlocal**. [Witten ('85); Zwiebach ('92)]
- This nonlocality in the worldsheet moduli space manifests as infinitely many spacetime derivatives $e^{\ell^2 \partial^2/2}$ in the vertices. ($\ell \sim$ string length $\sqrt{\alpha'}$)

$$S[\phi_a] = \int d^D x \left[\frac{1}{2} \sum_a \phi_a (\partial^2 - m_a^2) \phi_a - \sum_{\{a_i\}} \lambda_{a_1 \dots a_n} \tilde{\phi}_{a_1} \dots \tilde{\phi}_{a_n} \right]$$

or

$$\tilde{\phi}_a \equiv \exp(\ell^2 \partial^2/2) \phi_a$$

$$S[\tilde{\phi}_a] = \int d^D x \left[\frac{1}{2} \sum_a \tilde{\phi}_a (\partial^2 - m_a^2) e^{-\ell^2 \partial^2} \tilde{\phi}_a - \sum_{\{a_i\}} \lambda_{a_1 \dots a_n} \tilde{\phi}_{a_1} \dots \tilde{\phi}_{a_n} \right]$$

- Much progress has been made in understanding the S -matrices of such theories within the **path-integral formalism**.
[Sen ('16); Pius, Sen ('16, '18); de Lacroix, Erbin, Sen ('18), ...]
- On the other hand, they apparently lack a well-defined **Hamiltonian formalism** due to **nonlocality**.

THE PROBLEM OF NONLOCALITY IN STRING THEORY

D.A. ELIEZER*

Department of Physics, University of California, Santa Barbara, CA 93106, USA

R.P. WOODARD**

Department of Physics, Brown University, Providence, RI 02912, USA

Received 26 January 1989

(Revised 16 May 1989)

Is there a consistent Hamiltonian formalism ?

To properly treat $e^{-\ell^2 \partial^2}$, analytic continuation is necessary.

1. Euclideanized momenta (via *generalized Wick rotation*) [Pius, Sen ('16)]

Employed to establish Cutkosky rules [Pius, Sen ('16, '18)], unitarity [Sen ('16)], analyticity, crossing symmetry [de Lacroix, Erbin, Sen ('18)] ...

To properly treat $e^{-\ell^2 \partial^2}$, analytic continuation is necessary.

1. Euclideanized momenta (via *generalized Wick rotation*) [Pius, Sen ('16)]

Employed to establish Cutkosky rules [Pius, Sen ('16, '18)], unitarity [Sen ('16)], analyticity, crossing symmetry [de Lacroix, Erbin, Sen ('18)] ...

2. Complexified string length [Ho, Imamura, Kawai, WHS ('23)]

$$\ell^2 \rightarrow i\ell_E^2, \quad \ell_E^2 > 0$$

(Scattering amplitudes are analytic in $\ell^2 p_i \cdot p_j$.)

To properly treat $e^{-\ell^2 \partial^2}$, analytic continuation is necessary.

1. Euclideanized momenta (via *generalized Wick rotation*) [Pius, Sen ('16)]

Employed to establish Cutkosky rules [Pius, Sen ('16, '18)], unitarity [Sen ('16)], analyticity, crossing symmetry [de Lacroix, Erbin, Sen ('18)] ...

2. Complexified string length [Ho, Imamura, Kawai, WHS ('23)]

$$\ell^2 \rightarrow i\ell_E^2, \quad \ell_E^2 > 0$$

(Scattering amplitudes are analytic in $\ell^2 p_i \cdot p_j$.)

We attempt to construct a Hamiltonian formalism for the *analytically-continued* theory with $\ell^2 \rightarrow i\ell_E^2$.

(Continuation $\ell_E^2 \rightarrow -i\ell^2$ should be carried out in the end.)

In this talk, I will illustrate our approach using a **2D toy model**:

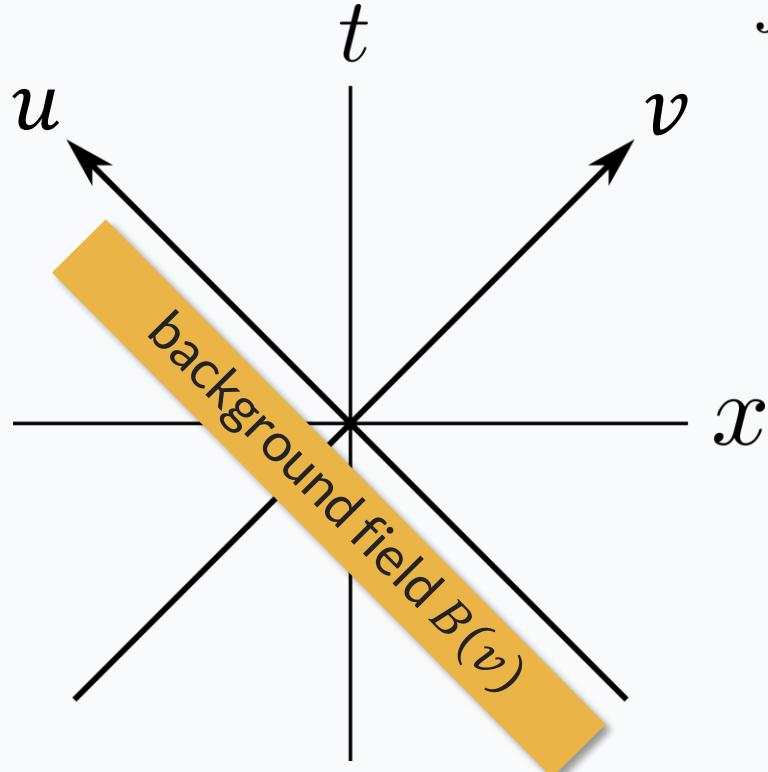
$$S_{\text{2D}}[\tilde{\phi}] = \int d^2x \left[\frac{1}{2} \tilde{\phi} \partial^2 \textcolor{red}{e}^{-\ell^2 \partial^2} \tilde{\phi} + 2\lambda \tilde{B}(v) \tilde{\phi}^2 \right]$$
$$\hookrightarrow \int d^2x \left[\frac{1}{2} \tilde{\phi} \partial^2 \textcolor{red}{e}^{-i\ell_E^2 \partial^2} \tilde{\phi} + 2\lambda \tilde{B}(v) \tilde{\phi}^2 \right] \quad (\ell^2 \hookrightarrow i\ell_E^2)$$

\uparrow
background field
 $\tilde{B}(v) = B(v)$

In this talk, I will illustrate our approach using a 2D toy model:

$$S_{2D}[\tilde{\phi}] = \int d^2x \left[\frac{1}{2} \tilde{\phi} \partial^2 e^{-\ell^2 \partial^2} \tilde{\phi} + 2\lambda \tilde{B}(v) \tilde{\phi}^2 \right]$$

$$\hookrightarrow \int d^2x \left[\frac{1}{2} \tilde{\phi} \partial^2 e^{-i\ell_E^2 \partial^2} \tilde{\phi} + 2\lambda \tilde{B}(v) \tilde{\phi}^2 \right] \quad (\ell^2 \hookrightarrow i\ell_E^2)$$



In the **light-cone frame** (u, v) ,

$$\partial^2 = -\partial_t^2 + \partial_x^2 = -4 \partial_u \partial_v$$

$$e^{-i\ell_E^2 \partial^2} = \exp(4i\ell_E^2 \partial_u \partial_v)$$

milder nonlocality
[Gross, Erler ('04)]

background field
 $\tilde{B}(v) = B(v)$

Simplification in the light-cone frame

Light-cone (*outgoing*) mode expansion:

$$\tilde{\phi}(u, v) = \int_0^\infty \frac{dP_u}{\sqrt{4\pi P_u}} \left[\tilde{a}_{P_u}(v) e^{-iP_u u} + \tilde{a}_{P_u}^\dagger(v) e^{iP_u u} \right]$$

Simplification in the light-cone frame

Light-cone (*outgoing*) mode expansion:

$$\tilde{\phi}(u, v) = \int_0^\infty \frac{dP_u}{\sqrt{4\pi P_u}} \left[\tilde{a}_{P_u}(v) e^{-iP_u u} + \tilde{a}_{P_u}^\dagger(v) e^{iP_u u} \right]$$

⇒ In Fourier space,

$$\begin{aligned} S_{2D}[\tilde{\phi}] &= \int du dv \left[-\tilde{\phi} \partial_u \partial_v \exp(4i\ell_E^2 \partial_u \partial_v) \tilde{\phi} + \lambda B(v) \tilde{\phi}^2 \right] \\ &= \int dV \int_0^\infty dP_u \left[i \tilde{a}_{P_u}^\dagger(v - L(P_u)) \partial_v \tilde{a}_{P_u}(v) \right. \\ &\quad \left. + \frac{\lambda}{P_u} B(v) \tilde{a}_{P_u}(v) \tilde{a}_{P_u}^\dagger(v) \right] \end{aligned}$$

$$L(P_u) \equiv 4 \ell_E^2 P_u$$

Simplification in the light-cone frame

After replacing

$$\{\tilde{a}_{P_u}(\nu), \tilde{a}_{P_u}^\dagger(\nu)\} \rightarrow \{\tilde{a}(t), \tilde{a}^\dagger(t)\}$$

$$B(\nu)/P_u \rightarrow b(t)$$

$$L(P_u) \equiv 4\ell_E^2 P_u \rightarrow L$$

the 2D model is equivalent to a **1D model**:

$$S_{1D}[\tilde{a}, \tilde{a}^\dagger] = \int dt [i \tilde{a}^\dagger(t - L) \partial_t \tilde{a}(t) + \lambda b(t) \tilde{a}(t) \tilde{a}^\dagger(t)]$$

with a **shift nonlocality** on the scale L .

Path-Integral Formalism for 1D Model

$$S_{1D}[\tilde{a}, \tilde{a}^\dagger] = \int dt [i \tilde{a}^\dagger(t - \textcolor{red}{L}) \partial_t \tilde{a}(t) + \lambda b(t) \tilde{a}(t) \tilde{a}^\dagger(t)]$$

Higher-pt correlation functions are fixed by the **2-pt correlator**:

$$\langle \tilde{a}(t) \tilde{a}^\dagger(t') \rangle_0 = i \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{e^{-i\omega(t-t'-\textcolor{red}{L})}}{\omega + i\epsilon} = \boxed{\Theta(t - t' - \textcolor{red}{L})}$$

↑
order of λ

$$\langle \tilde{a}(t) \tilde{a}^\dagger(t') \rangle_1 = i\lambda \Theta(t - t' - 2L) \int_{t' + \textcolor{red}{L}}^{t - \textcolor{red}{L}} b(t'') dt''$$

⋮

⋮ (perturbative in λ ,
non-perturbative in L)

Operator Formalism for 1D Model

- We construct an operator formalism for the **nonlocal 1D model** by demanding the correspondence

$$\langle 0 | \mathcal{T}\{\hat{a}(t) \hat{a}^\dagger(t')\} | 0 \rangle = \langle \tilde{a}(t) \tilde{a}^\dagger(t') \rangle \quad \text{--- } \star$$

between **time-ordered VEV** and the path-integral correlator.

Operator Formalism for 1D Model

- We construct an operator formalism for the **nonlocal 1D model** by demanding the correspondence

$$\langle 0 | \mathcal{T}\{\hat{a}(t) \hat{a}^\dagger(t')\} | 0 \rangle = \langle \tilde{a}(t) \tilde{a}^\dagger(t') \rangle \quad \text{--- } \star$$

between **time-ordered VEV** and the path-integral correlator.

We assume the perturbative expansion:

$$\hat{a}(t) = \hat{a}_0(t) + \hat{a}_1(t) + \cdots + \hat{a}_n(t) + \cdots$$

↑
order of λ

and solve for the operators *order* by *order* using \star .

Operator algebra from path integral

Define the vacuum state $|0\rangle$ using $\hat{a}_0(t)|0\rangle = 0$.

- Free theory:

$$\begin{aligned} \Theta(t - t') \langle 0 | \hat{a}_0(t) \hat{a}_0^\dagger(t') | 0 \rangle \\ + \Theta(t' - t) \langle 0 | \hat{a}_0^\dagger(t') \hat{a}_0(t) | 0 \rangle \end{aligned} = \langle \tilde{a}(t) \tilde{a}^\dagger(t') \rangle_0 = \Theta(t - t' - L)$$

$$\Rightarrow [\hat{a}_0(t), \hat{a}_0^\dagger(t')] = \Theta(|t - t'| - L)$$

Operator algebra from path integral

Define the vacuum state $|0\rangle$ using $\hat{a}_0(t)|0\rangle = 0$.

- **Free theory:**

$$\begin{aligned} \Theta(t - t') \langle 0 | \hat{a}_0(t) \hat{a}_0^\dagger(t') | 0 \rangle \\ + \Theta(t' - t) \langle 0 | \hat{a}_0^\dagger(t') \hat{a}_0(t) | 0 \rangle \end{aligned} = \langle \tilde{a}(t) \tilde{a}^\dagger(t') \rangle_0 = \Theta(t - t' - L)$$

$$\Rightarrow [\hat{a}_0(t), \hat{a}_0^\dagger(t')] = \Theta(|t - t'| - L)$$

- **$\mathcal{O}(\lambda^n)$ in interacting theory:**

$$\hat{a}_n(t) = i\lambda \int_{-\infty}^{\infty} dt'' \Theta(t - t'' - L) b(t'') \hat{a}_{n-1}(t'') \quad \forall n \geq 1$$

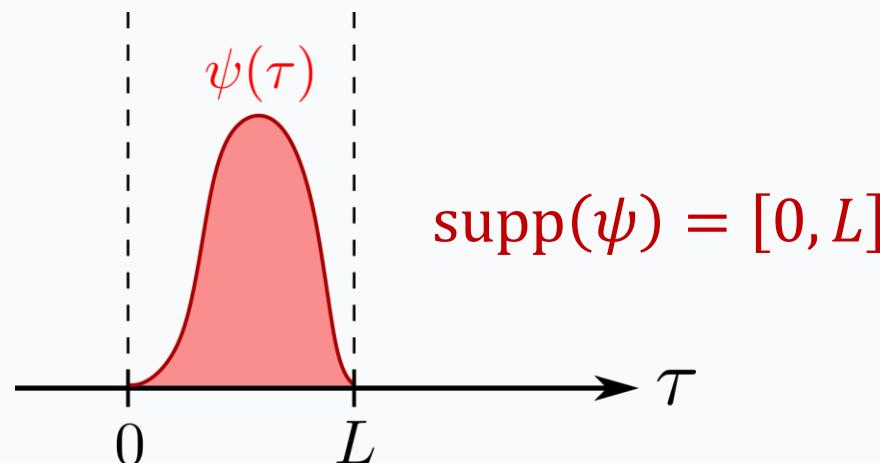
No “particle-like” states

A generic 1-particle state in the *naïve* Fock space:

$$|1_\psi\rangle \equiv \int_{-\infty}^{\infty} d\tau \psi(\tau) \hat{a}_0^\dagger(\tau) |0\rangle$$

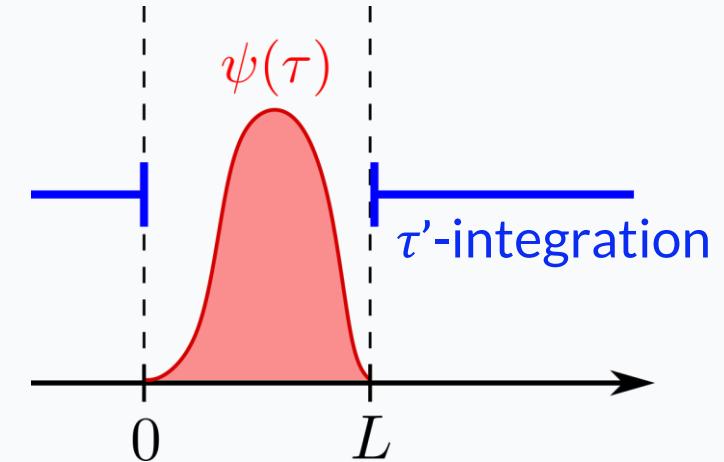
\uparrow
“state function”

Such a state is “*particle-like*” if $\psi(\tau)$ has compact support within the nonlocality scale L .



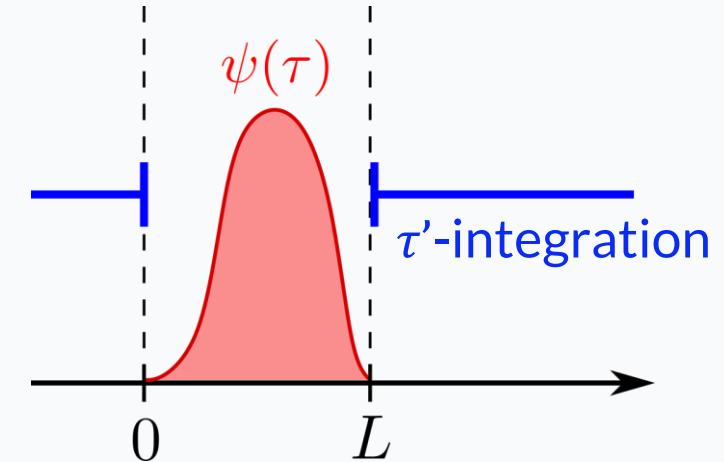
“Particle-like” states have **vanishing norm**:

$$\begin{aligned}
 \langle 1_\psi | 1_\psi \rangle &= \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\tau' \psi^*(\tau) \psi(\tau') [\hat{a}_0(\tau), \hat{a}_0^\dagger(\tau')] \\
 &= \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\tau' \psi^*(\tau) \psi(\tau') \Theta(|\tau - \tau'| - L) \\
 &= \int_{-\infty}^{\infty} d\tau \psi^*(\tau) \left[\int_{-\infty}^{\tau - L} d\tau' \psi(\tau') + \int_{\tau + L}^{\infty} d\tau' \psi(\tau') \right] = 0
 \end{aligned}$$



“Particle-like” states have **vanishing norm**:

$$\begin{aligned}
 \langle 1_\psi | 1_\psi \rangle &= \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\tau' \psi^*(\tau) \psi(\tau') [\hat{a}_0(\tau), \hat{a}_0^\dagger(\tau')] \\
 &= \int_{-\infty}^{\infty} d\tau \int_{-\infty}^{\infty} d\tau' \psi^*(\tau) \psi(\tau') \Theta(|\tau - \tau'| - L) \\
 &= \int_{-\infty}^{\infty} d\tau \psi^*(\tau) \left[\int_{-\infty}^{\tau - L} d\tau' \psi(\tau') + \int_{\tau + L}^{\infty} d\tau' \psi(\tau') \right] = 0
 \end{aligned}$$



⇒ **Physical states** have to be defined over a time interval $|\Delta\tau| > L$.

In the original 2D theory, this translates into:

$$|\Delta\nu| > L(P_u) \equiv 4\ell_E^2 P_u \quad \Rightarrow \quad \boxed{\Delta u \Delta \nu \gtrsim 4\ell_E^2}$$

(space-time uncertainty relation)

[Yoneya ('87, '89, '97, '00)]

1. Time dependence of \hat{a}_0 and \hat{a}_0^\dagger

The free classical equations of motion (EoMs)

$$i\partial_t \hat{a}_0(t+L) = 0 \quad \text{and} \quad -i\partial_t \hat{a}_0^\dagger(t-L) = 0$$

are **incompatible** with the desired operator algebra $[\hat{a}_0(t), \hat{a}_0^\dagger(t')] = \Theta(|t - t'| - L)$.

Q: How can the EoMs be incorporated ?

1. Time dependence of \hat{a}_0 and \hat{a}_0^\dagger

The free classical equations of motion (EoMs)

$$i\partial_t \hat{a}_0(t+L) = 0 \quad \text{and} \quad -i\partial_t \hat{a}_0^\dagger(t-L) = 0$$

are **incompatible** with the desired operator algebra $[\hat{a}_0(t), \hat{a}_0^\dagger(t')] = \Theta(|t - t'| - L)$.

Q: How can the EoMs be incorporated ?

2. Enlarged Fock space ?

The naïve Fock space $\text{span} \left\{ \prod_{i=1}^n \hat{a}_0^\dagger(t_i) |0\rangle \right\}$ contains unphysical DoFs.

Q: How can they be removed ?

EoMs as Physical-State Constraints

Classical EoMs:

$$i \partial_t \tilde{a}(t + L) + \lambda b(t) \tilde{a}(t) = 0, \quad -i \partial_t \tilde{a}^\dagger(t - L) + \lambda b(t) \tilde{a}^\dagger(t) = 0$$

We impose them as constraints on the **physical-state space**:

$$\mathcal{H}_{\text{phys}} \equiv \left\{ |\psi\rangle \in \text{span} \left\{ \prod_{i=1}^n \hat{a}_0^\dagger(\tau_i) |0\rangle \right\} \mid \langle \psi | (\text{EoMs}) |\psi\rangle = 0 \right\}$$

\Leftrightarrow Physical states are those that obey:

$$\left\{ \begin{array}{l} \left[i \partial_t \hat{a}(t + L) + \lambda b(t) \hat{a}(t) \right] |\psi\rangle = 0 \\ \langle \psi | \left[-i \partial_t \hat{a}^\dagger(t - L) + \lambda b(t) \hat{a}^\dagger(t) \right] = 0 \end{array} \right.$$

Physical-state condition on $\psi(\tau)$

In the free theory,

$$\begin{aligned} 0 = i \partial_t \hat{a}_0(t + L) |1_\psi\rangle &= \int_{-\infty}^{\infty} d\tau \psi(\tau) i \partial_t [\hat{a}_0(t + L), \hat{a}_0^\dagger(\tau)] |0\rangle \\ &= \int_{-\infty}^{\infty} d\tau \psi(\tau) i \partial_t \Theta(|t - \tau + L| - L) |0\rangle \\ &= i [\psi(t) - \psi(t + 2L)] |0\rangle \end{aligned}$$

Physical-state condition on $\psi(\tau)$

In the free theory,

$$\begin{aligned} 0 = i \partial_t \hat{a}_0(t + L) |1_\psi\rangle &= \int_{-\infty}^{\infty} d\tau \psi(\tau) i \partial_t [\hat{a}_0(t + L), \hat{a}_0^\dagger(\tau)] |0\rangle \\ &= \int_{-\infty}^{\infty} d\tau \psi(\tau) i \partial_t \Theta(|t - \tau + L| - L) |0\rangle \\ &= i [\psi(t) - \psi(t + 2L)] |0\rangle \end{aligned}$$

⇒ 1-particle state functions must satisfy:

$$\psi(\tau + 2L) - \psi(\tau) = 0 \quad \forall \tau \quad (2L\text{-periodic})$$

* $\mathcal{O}(\lambda^n)$ ($n \geq 1$) corrections to ψ can be fixed in a similar way.

Removal of negative-norm states

Let ψ_i ($i = 1, 2$) be physical state functions.

$$|1_{\psi_i}\rangle := \lim_{N \rightarrow \infty} \frac{1}{2NL} \int_{-NL}^{NL} d\tau \psi_i(\tau) \hat{a}_0^\dagger(\tau) |0\rangle$$

\uparrow
(2L-periodic)

$$\Rightarrow \langle 1_{\psi_1} | 1_{\psi_2} \rangle = \bar{\psi}_1^* \bar{\psi}_2$$

where $\bar{\psi} \equiv \frac{1}{2NL} \int_{-NL}^{NL} \psi(t) dt = \frac{1}{2L} \int_{-L}^L \psi(t) dt$ ("zero mode")

Removal of negative-norm states

Let ψ_i ($i = 1, 2$) be physical state functions.

$$|1_{\psi_i}\rangle := \lim_{N \rightarrow \infty} \frac{1}{2NL} \int_{-NL}^{NL} d\tau \psi_i(\tau) \hat{a}_0^\dagger(\tau) |0\rangle$$

\uparrow
(2L-periodic)

$$\Rightarrow \langle 1_{\psi_1} | 1_{\psi_2} \rangle = \bar{\psi}_1^* \bar{\psi}_2$$

where $\bar{\psi} \equiv \frac{1}{2NL} \int_{-NL}^{NL} \psi(t) dt = \frac{1}{2L} \int_{-L}^L \psi(t) dt$ ("zero mode")

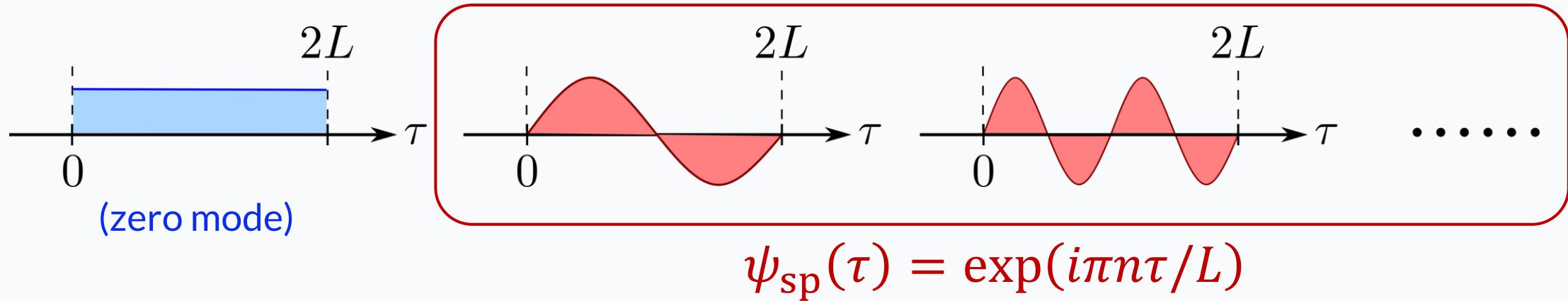
\Rightarrow Negative-norm states are **absent** in $\mathcal{H}_{\text{phys}}$:

$$| |1_{\psi_1}\rangle + |1_{\psi_2}\rangle |^2 = |\bar{\psi}_1|^2 + |\bar{\psi}_2|^2 + 2 \operatorname{Re} \{ \bar{\psi}_1^* \bar{\psi}_2 \} = |\bar{\psi}_1 + \bar{\psi}_2|^2 \geq 0$$

Zero-norm states in $\mathcal{H}_{\text{phys}}$

A general physical state function $\psi(\tau)$ (**2L-periodic**) can be decomposed as:

$$\psi(\tau) = \text{constant} + \sum_{n \in \mathbb{Z} \setminus \{0\}} C_n \exp(i\pi n \tau / L)$$



$$\Rightarrow \text{zero-norm states: } |1_{\text{sp}}\rangle := \lim_{N \rightarrow \infty} \frac{1}{2NL} \int_{-NL}^{NL} d\tau \psi_{\text{sp}}(\tau) \hat{a}_0^\dagger(\tau) |0\rangle$$

Zero-norm states $|1_{\text{sp}}\rangle$ are spurious

In the interacting theory, \hat{a} has a perturbative expansion in λ that is linear in \hat{a}_0 .

⇒ Any linear functional $L[\hat{a}]$ can be expressed schematically as:

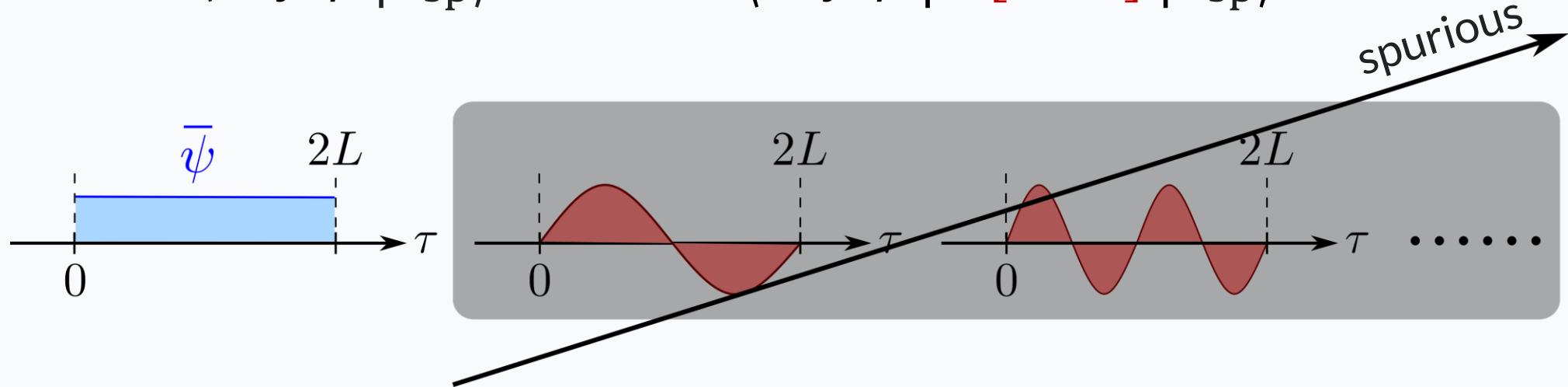
$$L[\hat{a}] = \int \cdots \int (\cdots) \hat{a}_0(t + c)$$

⇒ Zero-norm states are annihilated by $L[\hat{a}]$:

$$\begin{aligned} L[\hat{a}]|1_{\text{sp}}\rangle &= \int \cdots \int (\cdots) \int_{-\infty}^{\infty} d\tau \psi_{\text{sp}}(\tau) [\hat{a}_0(t + c), \hat{a}_0^\dagger(\tau)] |0\rangle \\ &= \int \cdots \int (\cdots) \left[\int_{-\infty}^{\infty} d\tau e^{in\pi\tau/L} - \int_{t + c - L}^{t - c + L} d\tau e^{in\pi\tau/L} \right] |0\rangle = 0 \end{aligned}$$

Zero-norm states $|1_{\text{sp}}\rangle$ decouple to all orders in λ :

$$\langle \text{any } \psi | 1_{\text{sp}} \rangle = 0, \quad \langle \text{any } \psi | F[\hat{a}, \hat{a}^\dagger] | 1_{\text{sp}} \rangle = 0$$



Only the zero mode $\bar{\psi}$ contributes to physical observables.

$$\mathcal{H}_{\text{phys}} = \text{span} \left\{ \left(\hat{\tilde{A}}^\dagger \right)^n |0\rangle \right\}, \text{ where } \hat{\tilde{A}}^\dagger \equiv \lim_{N \rightarrow \infty} \frac{1}{2NL} \int_{-NL}^{NL} d\tau \hat{a}_0^\dagger(\tau)$$

$\dim(\mathcal{H}_{\text{phys}})$ is the same as the local theory ($L = 0$).

Summary

- We put forward an operator formalism for **stringy nonlocality** $e^{-\ell^2 \partial^2}$.
- Consistency with the path-integral formalism is automatic.
- Classical EoMs are realized as **physical-state constraints**.
⇒ Negative-norm states **eliminated**; zero-norm states **decoupled**.

Summary

- We put forward an operator formalism for **stringy nonlocality** $e^{-\ell^2 \partial^2}$.
- Consistency with the path-integral formalism is automatic.
- Classical EoMs are realized as **physical-state constraints**.
⇒ Negative-norm states **eliminated**; zero-norm states **decoupled**.

Future prospects:

- 1) Possibility of an *interaction picture* with **covariant time ordering** T^* ?
- 2) Extension to treat multiple fields and higher-point interactions.