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Stringy Nonlocality
• In string field theory, fundamental interactions (splitting and joining 

of strings) are nonlocal.

• This nonlocality in the worldsheet moduli space manifests as infinitely 

many spacetime derivatives 𝑒ℓ2𝜕2/2 in the vertices. (ℓ ∼ string length 𝛼′) 

[Witten (‘85); Zwiebach (‘92)] 
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• In string field theory, fundamental interactions (splitting and joining 
of strings) are nonlocal.

• This nonlocality in the worldsheet moduli space manifests as infinitely 

many spacetime derivatives 𝑒ℓ2𝜕2/2 in the vertices. (ℓ ∼ string length 𝛼′) 



• Much progress has been made in understanding the 𝑆-matrices 
 of such theories within the path-integral formalism.

• On the other hand, they apparently lack a well-defined 
Hamiltonian formalism due to nonlocality. 

Is there a consistent Hamiltonian formalism ?

[Sen (‘16); Pius, Sen (’16, ‘18); de Lacroix, Erbin, Sen (‘18), …] 



[Pius, Sen (‘16)] 

To properly treat 𝑒−ℓ2𝜕2
, analytic continuation is necessary.

1. Euclideanized momenta (via generalized Wick rotation)

Employed to establish Cutkosky rules [Pius, Sen (‘16, ‘18)] , unitarity [Sen (‘16)] ,
analyticity, crossing symmetry [de Lacroix, Erbin, Sen (‘18)] ...
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[Pius, Sen (‘16)] 

To properly treat 𝑒−ℓ2𝜕2
, analytic continuation is necessary.

1. Euclideanized momenta (via generalized Wick rotation)

Employed to establish Cutkosky rules [Pius, Sen (‘16, ‘18)] , unitarity [Sen (‘16)] ,
analyticity, crossing symmetry [de Lacroix, Erbin, Sen (‘18)] ...

2. Complexified string length

(Scattering amplitudes are analytic in ℓ2𝑝𝑖 ⋅ 𝑝𝑗 .)

ℓ2 → 𝑖ℓ𝐸
2 ,     ℓ𝐸

2 > 0

We attempt to construct a Hamiltonian formalism 
for the analytically-continued theory with ℓ2 → 𝑖ℓ𝐸

2  .

(Continuation ℓ𝐸
2 → −𝑖ℓ2 should be carried out in the end.)



In this talk, I will illustrate our approach using a 2D toy model:

background field 
෨𝐵 𝑣 = 𝐵 𝑣



In this talk, I will illustrate our approach using a 2D toy model:

background field 
෨𝐵 𝑣 = 𝐵 𝑣

𝑢 𝑣

In the light-cone frame 𝑢, 𝑣 , 

𝜕2 = −𝜕𝑡
2 + 𝜕𝑥

2 = −4 𝜕𝑢𝜕𝑣

𝑒−𝑖ℓ𝐸
2  𝜕2

= exp 4𝑖ℓ𝐸
2  𝜕𝑢𝜕𝑣

milder nonlocality

[Gross, Erler (’04)]



Simplification in the light-cone frame

Light-cone (outgoing) mode expansion:



Simplification in the light-cone frame

Light-cone (outgoing) mode expansion:

⇒ In Fourier space,

𝐿 𝑃𝑢 ≡ 4 ℓ𝐸
2 𝑃𝑢



Simplification in the light-cone frame

After replacing

෤𝑎𝑃𝑢
𝑣 , ෤𝑎𝑃𝑢

† 𝑣  →  ෤𝑎 𝑡 , ෤𝑎† 𝑡

𝐵 𝑣 /𝑃𝑢 → 𝑏 𝑡

𝐿 𝑃𝑢 ≡ 4ℓ𝐸
2 𝑃𝑢 → 𝐿

the 2D model is equivalent to a 1D model:

𝑆1D ෤𝑎, ෤𝑎† = න𝑑𝑡 𝑖 ෤𝑎† 𝑡 − 𝐿 𝜕𝑡 ෤𝑎 𝑡 + 𝜆 𝑏 𝑡 ෤𝑎 𝑡 ෤𝑎† 𝑡

with a shift nonlocality on the scale 𝐿 .



Path-Integral Formalism for 1D Model

Higher-pt correlation functions are fixed by the 2-pt correlator:

𝑆1D ෤𝑎, ෤𝑎† = න𝑑𝑡 𝑖 ෤𝑎† 𝑡 − 𝐿 𝜕𝑡 ෤𝑎 𝑡 + 𝜆 𝑏 𝑡 ෤𝑎 𝑡 ෤𝑎† 𝑡

⟨ ෤𝑎 𝑡 ෤𝑎† 𝑡′ 〉0 = 𝑖 න
−∞

∞ 𝑑𝜔

2𝜋

𝑒−𝑖𝜔 𝑡−𝑡′−𝐿

𝜔 + 𝑖𝜖
=  Θ 𝑡 − 𝑡′ − 𝐿

⟨ ෤𝑎 𝑡 ෤𝑎† 𝑡′ 〉1 = 𝑖𝜆 Θ 𝑡 − 𝑡′ − 2𝐿 න
𝑡′ + 𝐿

𝑡 − 𝐿

𝑏 𝑡′′ 𝑑𝑡′′

order of 𝜆

…
…

(perturbative in 𝜆, 
non-perturbative in 𝐿)



Operator Formalism for 1D Model
• We construct an operator formalism for the nonlocal 1D model
 by demanding the correspondence

⟨0| 𝒯{ ෠෤𝑎 𝑡  ෠෤𝑎† 𝑡’ } 0 =  ⟨ ෤𝑎 𝑡 ෤𝑎†(𝑡’)⟩

between time-ordered VEV and the path-integral correlator.

⋆
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Operator Formalism for 1D Model
• We construct an operator formalism for the nonlocal 1D model
 by demanding the correspondence

⟨0| 𝒯{ ෠෤𝑎 𝑡  ෠෤𝑎† 𝑡’ } 0 =  ⟨ ෤𝑎 𝑡 ෤𝑎†(𝑡’)⟩

between time-ordered VEV and the path-integral correlator.

We assume the perturbative expansion:

෠෤𝑎 𝑡 = ෠෤𝑎0 𝑡 + ෠෤𝑎1 𝑡 + ⋯ + ෠෤𝑎𝑛 𝑡  + ⋯

order of 𝜆

and solve for the operators order by order using        .

⋆



Operator algebra from path integral

Define the vacuum state 0  using ෠෤𝑎0 𝑡 |0〉 = 0 .

• Free theory:

Θ(𝑡 − 𝑡′) ⟨0| ෠෤𝑎0 𝑡  ෠෤𝑎0
† 𝑡′ 0

 + Θ(𝑡′ − 𝑡) ⟨0| ෠෤𝑎0
† 𝑡′  ෠෤𝑎0 𝑡 0

= ⟨ ෤𝑎 𝑡 ෤𝑎† 𝑡′ 〉0 = Θ 𝑡 − 𝑡′ − 𝐿

⇒ [ ෠෤𝑎0 𝑡  , ෠෤𝑎0
† 𝑡′ ] = Θ(|𝑡 −  𝑡′|  −  𝐿)
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⇒ [ ෠෤𝑎0 𝑡  , ෠෤𝑎0
† 𝑡′ ] = Θ(|𝑡 −  𝑡′|  −  𝐿)

• 𝓞 𝝀𝒏  in interacting theory:

෠෤𝑎𝑛 𝑡 = 𝑖𝜆 න
−∞

∞

𝑑𝑡′′ Θ 𝑡 − 𝑡′′ − 𝐿 𝑏 𝑡′′ ෠෤𝑎𝑛−1 𝑡′′ ∀ 𝑛 ≥ 1



No “particle-like” states

A generic 1-particle state in the naïve Fock space:

Such a state is “particle-like” if 𝜓 𝜏  has compact support 
within the nonlocality scale 𝐿 . 

“state function”

supp 𝜓 = 0, 𝐿



“Particle-like” states have vanishing norm:

𝜏’-integration



[Yoneya (’87, ‘89, ‘97, ‘00)]

“Particle-like” states have vanishing norm:

⇒ Physical states have to be defined over a time interval Δ𝜏 > 𝐿 .

In the original 2D theory, this translates into:

Δ𝑣 > 𝐿 𝑃𝑢 ≡ 4ℓ𝐸
2 𝑃𝑢  ⇒  Δ𝑢 Δ𝑣 ≳ 4ℓ𝐸

2

(space-time uncertainty relation)

𝜏’-integration



1. Time dependence of ෡෥𝒂𝟎 and ෡෥𝒂𝟎
†

The free classical equations of motion (EoMs) 

𝑖𝜕𝑡
෠෤𝑎0 𝑡 + 𝐿 = 0  and     −𝑖𝜕𝑡

෠෤𝑎0
† 𝑡 − 𝐿 = 0

are incompatible with the desired operator algebra ෠෤𝑎0 𝑡 , ෠෤𝑎0
† 𝑡′ =

Θ 𝑡 − 𝑡′ − 𝐿  .

Q: How can the EoMs be incorporated ?
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†

The free classical equations of motion (EoMs) 

𝑖𝜕𝑡
෠෤𝑎0 𝑡 + 𝐿 = 0  and     −𝑖𝜕𝑡

෠෤𝑎0
† 𝑡 − 𝐿 = 0

are incompatible with the desired operator algebra ෠෤𝑎0 𝑡 , ෠෤𝑎0
† 𝑡′

= Θ 𝑡 − 𝑡′ − 𝐿  .

Q: How can the EoMs be incorporated ?

The naïve Fock space                                                     contains unphysical DoFs.

Q: How can they be removed ?

2. Enlarged Fock space ?



EoMs as Physical-State Constraints
Classical EoMs:

⇔ Physical states are those that obey:

We impose them as constraints on the physical-state space:



Physical-state condition on 𝝍 𝝉

In the free theory, 



Physical-state condition on 𝝍 𝝉

In the free theory, 

⇒ 1-particle state functions must satisfy:

(2𝐿-periodic)𝜓 𝜏 + 2𝐿 − 𝜓 𝜏 = 0 ∀ 𝜏

* 𝒪 𝜆𝑛 𝑛 ≥ 1  corrections to 𝜓 can be fixed in a similar way.



Removal of negative-norm states

Let 𝜓𝑖 𝑖 = 1, 2  be physical state functions.

⇒ 

(2𝐿-periodic)

(“zero mode”)where 𝜓 ≡
1

2𝑁𝐿
න

−𝑁𝐿

𝑁𝐿

𝜓 𝑡 𝑑𝑡 =
1

2𝐿
න

−𝐿

𝐿

𝜓 𝑡 𝑑𝑡



Removal of negative-norm states

Let 𝜓𝑖 𝑖 = 1, 2  be physical state functions.

⇒ 

(2𝐿-periodic)

(“zero mode”)where

⇒ Negative-norm states are absent in               :

𝜓 ≡
1

2𝑁𝐿
න

−𝑁𝐿

𝑁𝐿

𝜓 𝑡 𝑑𝑡 =
1

2𝐿
න

−𝐿

𝐿

𝜓 𝑡 𝑑𝑡



Zero-norm states in 𝓗𝐩𝐡𝐲𝐬 

A general physical state function 𝜓 𝜏  (2𝐿-periodic) 
can be decomposed as:

⇒ zero-norm states: 

𝜓sp 𝜏 = exp 𝑖𝜋𝑛𝜏/𝐿

𝜓 𝜏 = constant + σ𝑛 ∈ ℤ∖{0} 𝐶𝑛 exp 𝑖𝜋𝑛𝜏/𝐿

(zero mode)



Zero-norm states |𝟏𝐬𝐩⟩ are spurious 

In the interacting theory, ෠෤𝑎 has a perturbative expansion in 𝜆
that is linear in ෠෤𝑎0 . 

⇒ Any linear functional 𝐿[ ෠෤𝑎] can be expressed schematically as:

= න ⋯ න ⋯ න
−∞

∞

𝑑𝜏 𝑒𝑖𝑛𝜋𝜏/𝐿 − න
𝑡 + 𝑐 − 𝐿

𝑡 − 𝑐 + 𝐿

𝑑𝜏 𝑒𝑖𝑛𝜋𝜏/𝐿 |0⟩ = 0

𝐿[ ෠෤𝑎]|1sp⟩ = න ⋯ න ⋯ න
−∞

∞

𝑑𝜏 𝜓sp 𝜏 [ ෠෤𝑎0 𝑡 + 𝑐  , ෠෤𝑎0
†(𝜏)] |0⟩

𝐿[ ෠෤𝑎] = න ⋯ න ⋯  ෠෤𝑎0 𝑡 + 𝑐

⇒ Zero-norm states are annihilated by 𝐿[ ෠෤𝑎] :



Zero-norm states |1sp⟩ decouple to all orders in 𝜆 :

⟨any 𝜓 1sp = 0 , any 𝜓  𝐹[ ෠෤𝑎, ෠෤𝑎†] 1sp = 0

Only the zero mode 𝜓 contributes to physical observables. 

where

dim ℋphys  is the same as the local theory 𝐿 = 0  . 



Summary
• We put forward an operator formalism for stringy nonlocality 𝑒−ℓ2𝜕2

 .

• Consistency with the path-integral formalism is automatic.

• Classical EoMs are realized as physical-state constraints.

 ⇒ Negative-norm states eliminated; zero-norm states decoupled.



Summary
• We put forward an operator formalism for stringy nonlocality 𝑒−ℓ2𝜕2

 .

• Consistency with the path-integral formalism is automatic.

• Classical EoMs are realized as physical-state constraints.

 ⇒ Negative-norm states eliminated; zero-norm states decoupled.

Future prospects:

1) Possibility of an interaction picture with covariant time ordering 𝑇∗ ?

2) Extension to treat multiple fields and higher-point interactions.
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