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Stringy Nonlocality

In string field theory, fundamental interactions (splitting and joining
of strings) are nonlocal. [Witten (‘85); Zwiebach (‘92)]

This nonlocality in the worldsheet moduli space manifests as infinitely
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many spacetime derivatives e? ?°/2 in the vertices. (¢ ~ stringlength Va’)
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Much progress has been made in understanding the S-matrices
of such theories within the path-integral formalism.
[Sen (‘16); Pius, Sen ('16, ‘18); de Lacroix, Erbin, Sen (‘18), ...]
On the other hand, they apparently lack a well-defined
Hamiltonian formalism due to nonlocality.
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|s there a consistent Hamiltonian formalism ?
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To properly treat e , analytic continuation is necessary.

1. Euclideanized momenta (via generalized Wick rotation) [Pius, Sen (16)]

Employed to establish Cutkosky rules (pius, sen (16,18)1, unitarity [sen (16)],
analyticity, crossing symmetry [de Lacroix, Erbin, Sen (‘18)] ...
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To properly treat e =* 9° analytic continuation is necessary.

1. Euclideanized momenta (via generalized Wick rotation) [Pius, Sen (16)]

Employed to establish Cutkosky rules (pius, sen (16,18)1, unitarity [sen (16)],
analyticity, crossing symmetry [de Lacroix, Erbin, Sen (‘18)] ...

2. Complexified string length [Ho, Imamura, Kawai, WHS (23)]

25k, >0

(Scattering amplitudes are analyticin £*p; - p; .)

We attempt to construct a Hamiltonian formalism
for the analytically-continued theory with £? — if% .

(Continuation €E2 — —i£? should be carried out in the end.)



In this talk, | will illustrate our approach using a 2D toy model:
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In this talk, | will illustrate our approach using a 2D toy model:

Sifd) = [ E 5077 § 12X B(v cﬂ
— /dzx E ¢532 e~ 50" q3+ 2\ é(’v) qu} (0% — %)
)
v

background field
B(v) = B(v)

In the light-cone frame (u, v),
T 02 = —0f + 02 =—40,0,

_ip2 32 .
e "E9" = exp(4ifZ 0,0,)
milder nonlocality
[Gross, Erler ('04)]




Simplification in the light-cone frame

Light-cone (outgoing) mode expansion:
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Simplification in the light-cone frame

Light-cone (outgoing) mode expansion:

7 . > dPU ~ —i1P,u ~T 1P,u
Buv) = | o= |an (o) e+ a], (o) €T

= In Fourier space,

Seld] = [ dudv [~90,0, exp(4i60,0,) 6+ X\ Bw) &

f v / dpu[mp (v — L(P,)) B, ip. (v)

[L(Pu) = 4 ¢2P ] + Fu, B(v)ap, (v)dp, (’0)]



Simplification in the light-cone frame

After replacing
@, .3}, ) - {a®,a"®)
B(w)/R, — b(¢)
L(P) =4¢:P, - L

the 2D model is equivalent to a 1D model:

{Sm[é‘i, at| = f dt|iat(t —L) 0, a(t) + 21b(t) a(t) d*(t)]}

with a shift nonlocality on the scale L .



Path-Integral Formalism for 1D Model
Sipla, at] = j dtliat(t—L)a,at) + Ab(t)ae) at (o)}

Higher-pt correlation functions are fixed by the 2-pt correlator:

© 1., e—ilw(t-t'-L)

=\ ATy, — _ 4
@) at(t »? i f_oo S ot —t' — 1)
order of A
t—L
@)art)), =ire( -t —2L) b(t'")dt"
t'+L

(perturbative in 4,
non-perturbative in L)



Operator Formalism for 1D Model

 We construct an operator formalism for the nonlocal 1D model
by demanding the correspondence

(0] T{a(t) at(¥)} 10) = (a(®) ar®)) — *

between time-ordered VEV and the path-integral correlator.



Operator Formalism for 1D Model

 We construct an operator formalism for the nonlocal 1D model
by demanding the correspondence

(0] T{a(t) at(¥)} 10) = (a(®) ar®)) — *

between time-ordered VEV and the path-integral correlator.

We assume the perturbative expansion:

A(t) = Go(t) + & () + -+ + G () + -+
1

order of A

and solve for the operators order by order using % .



Operator algebra from path integral
Define the vacuum state |0) using a,(t)|0) = 0.
* Freetheory:
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Operator algebra from path integral
Define the vacuum state |0) using a,(t)|0) = 0.
* Freetheory:

Ot —t) (0]d,(t) @ (t)]0)
+0(t — t) (0|1 (t") G, ()]0)

= ([0, &) =0t — ¢'| - 1))

=(a@)a’t))y, =0 -t —L)

 O(A") ininteracting theory:

a,(t) = ixlf dt”" 0t —t" —L)b(t") a,_(t") Vvn>1



No “particle-like” states

A generic 1-particle state in the naive Fock space:

= [ ) trv(s it (7)|0)

“state function”

Such a state is “particle-like” if 1 (t) has compact support
within the nonlocality scale L .

()

0 L



“Particle-like” states have vanishing norm:

.' 7’-integration

ol = | " dr / T dr () () [Go(r) 6L ()]

= /_O; dr /_Z dr' v* (1) (') O(|r — 7| — L)

:/_oodw*m /_ dT’w(T’H/OO d’r’w(’r')- =0

00 T+ L




“Particle-like” states have vanishing norm: ()

ol = | " dr / T g @) o). a1

7’-integration

:/_O;dT/;ZdT’@D*(T)w(T’)@(\T—fr’\—L) (E) IE, >
00 [ st — L

:/_Oodw*(ﬂ f_oo dT’w(T’H[deT’w(T’)- =0

= Physical states have to be defined over a time interval |At| > L.

In the original 2D theory, this translates into:

Av| > L(P,) = 463P, = [Dudv = 443 |

(space-time uncertainty relation) [Yoneya ('87,°89,°97,°00)]




1. Time dependence of @, and @,
The free classical equations of motion (EoMs)
i0,ay(t+L)=0 and —id, ag(t —L)=0

are incompatible with the desired operator algebra [a, (), a;r ("] =
O(t—-t'|—1L).

Q: How can the EoMs be incorporated ?
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The free classical equations of motion (EoMs)
i0,ay(t+L)=0 and —id, ag(t —L)=0

are incompatible with the desired operator algebra [a, (), a;r ("]
=0(t—-t"|—-1L).

Q: How can the EoMs be incorporated ?
2. Enlarged Fock space ?
The naive Fock space span {H” 1 ag( i)\O)} contains unphysical DoFs.

Q: How can they be removed ?



EoMs as Physical-State Constraints

Classical EoMs:
iova(t+ L)+ Ab(t)at)=0, —ida'(t—L)+ A bt)a'(t) =0
We impose them as constraints on the physical-state space:
Honys = {[¥) € span {0, &§(m)|0) } | (v](BoMs)|y) = 0}
& Physical states are those that obey:
[fz 9, &(t + L) + \b(t) éi(t)} ) = 0
{ o [—i@t Gt (t — L) + \b(t) éﬁ(t)} — 0



Physical-state condition on y)(7)

In the free theory,

0= idhdn(t+ L)1) = [ T dr(r)i, olt + L), al(r)] 0)

_ /OO dr ()i 9, O(|t — T + L| — L) |0)

=1 |p(t) —¥(t+2L)]|0)



Physical-state condition on y)(7)

In the free theory,

0= idhdn(t+ L)1) = [ T dr(r)i, olt + L), al(r)] 0)

_ /OO dr ()i, Ot — 7+ L| — L) |0)

— OO

=1 |p(t) —¥(t+2L)]|0)

= 1-particle state functions must satisfy:

[ l/)(T + 2L) — l/J(T) =0 V T] (2L-periodic)

*O(A™") (n = 1) corrections to y can be fixed in a similar way.



Removal of negative-norm states

Lety; (i = 1, 2) be physical state functions.

1 NL .
1,,) = A}gnoom/_m i ()83 0
(2L-periodic)

= [(1% | 1y,) = ] 1_?2]

NL

— 1 1 (L
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where Y NI _NLz/J(t) dt o f_LI/J(t) dt  (“zeromode”)



Removal of negative-norm states

Lety; (i = 1, 2) be physical state functions.

1 N L .
1p.) == lim — (7) &
1) = Jim o [ i ()83 0

(2L-periodic)

= [(1% | 1y,) = ] 1_?2]

NL 1

_ 1 L
E —_— — — “« d ”»
where Y NI _NLz/J(t) dt o f_LI/J(t) dt  (“zeromode”)

= Negative-norm states are absent in Hpnys:

L) + [Lya)|? = [@1] + [Ba]” + 2Re {7 %o} = th1 + 2| > 0



Zero-norm states in 7}y

A general physical state function () (2L-periodic)
can be decomposed as:

Y(t) = constant + Y., ¢ 71 0y Cn €xp(innt/L)

or, ([

2 A A A
0 0 A4 0 V V

2L 2L

(zero mode) - .
Psp(0) = exp(inn/L)

NL
= zero-norm states: |lp) = lim —— f dT bsp () @ (7) |0)
—NL



Zero-norm states |1,) are spurious

In the interacting theory, @ has a perturbative expansion in 1
that is linearin @, .

= Any linear functional L[a] can be expressed schematically as:

LE) = | [ ) Gole + 0

= Zero-norm states are annihilated by L[a] :

L[G]]1sp) —f---f<-~> f 4t ey (0) [Bo(t + ), &1 ()] 10)

00 t—c+ L
e[ [ arammn - [ g gn] 0y o
— 00 t+c—L



Zero-norm states |15,) decouple to all orders in A:

(any ¢ |15,) = 0, (any ¢ | F[a,a™] [1sp) = 0

2L

Only the zero mode i contributes to physical observables.

2 NL
_ i = i L :
Hphys = Spaﬂ{(A ) \0>}a where A= Jim o /_NL dr aj(r)

[ dim(#,ys) is the same as the local theory (L = 0) ]




Summary

We put forward an operator formalism for stringy nonlocality e=t°0%
Consistency with the path-integral formalism is automatic.
Classical EoMs are realized as physical-state constraints.

= Negative-norm states eliminated; zero-norm states decoupled.



Summary

 We put forward an operator formalism for stringy nonlocality e=t°0%
* Consistency with the path-integral formalism is automatic.
* Classical EoMs are realized as physical-state constraints.

= Negative-norm states eliminated; zero-norm states decoupled.

Future prospects:

1) Possibility of an interaction picture with covariant time ordering T* ?

2) Extension to treat multiple fields and higher-point interactions.
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