

Twist Field Deformation in Closed Superstring Field Theory

from $\mathbb{C}^2/\mathbb{Z}_2$ to Eguchi-Hanson space

Xianghang Zhang (張湘杭)
Nagoya U. 名古屋大学

KEK Theory Workshop 2025

a joint work with Ivo Sachs, University of Munich (LMU)

Outline

1. Motivation

- ▶ Closed Strings on Orbifolds
- ▶ **Why String Field Theory?**

2. Results from SFT

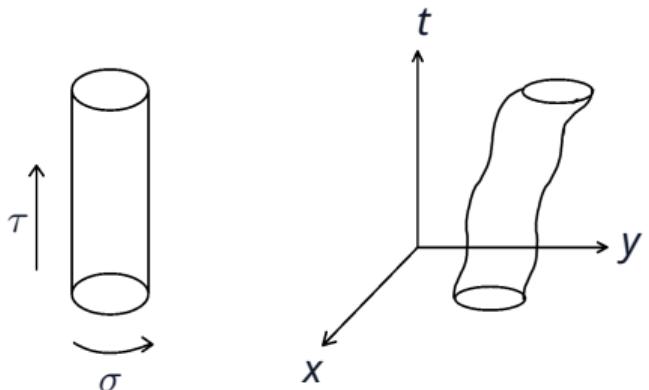
- ▶ Perturbative Setup on $\mathbb{C}^2/\mathbb{Z}_2$
- ▶ 2nd Order: Recovering Eguchi-Hanson
- ▶ 3rd Order: Vanishing Obstruction

3. Summary & Outlook

Motivation

Closed Strings on Orbifolds

String theory is defined by a CFT on the worldsheet



As a gravity theory, the excitations of the theory also **deforms the spacetime**

Closed Strings on Orbifolds

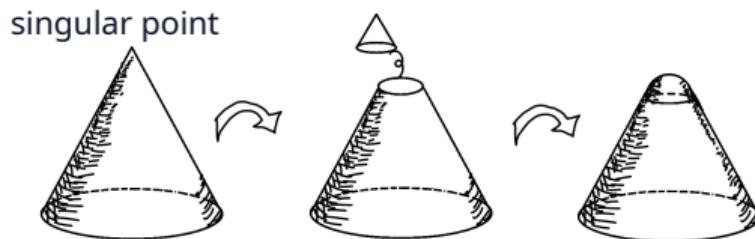
Deforming/Resolving an **orbifold**:

$$\mathbb{C}^2/\mathbb{Z}_2 : z_1, z_2 \in \mathbb{C}, (z_1, z_2) \sim (-z_1, -z_2)$$

Mathematical description:

$$\text{Eguchi-Hanson space} \cong T^*S^2$$

The metric is known as one of the
gravitational instantons



Question:

What's the metric determined by string dynamics on the new space?

We use string field theory (SFT) to tackle this problem!

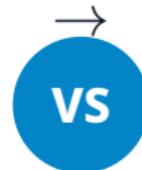
Why String Field Theory?

"Second

Worldsheet (CFT)

- ▶ Exactly marginal deformations
- ▶ Fixed background
- ▶ On-shell: scattering amplitudes $\mathcal{A}_{g,n}$

Quantization"
à la Batalin-Vilkovisky



SFT

- ▶ Solutions to the classical EOM
- ▶ Background independent
- ▶ Off-shell: action principle $S[\Psi]$

SFT is often just a cumbersome path to worldsheet results! Unless you need...

Applications:

1. RR-flux background (CFT is non-local)
2. LSZ reduction formula and mass renormalization (Off-shell)
3. Non-perturbativity (D-instanton, Tachyon condensation)

X. Yin,
A. Sen,
M. Schnabl,
...

Results from SFT

Perturbative Setup: Type IIB on $\mathbb{C}^2/\mathbb{Z}_2$

Hilbert space where the string field Ψ lives

$$\mathcal{H} = \mathcal{H}_0 \oplus \mathcal{H}_\theta$$

\mathcal{H}_θ : twisted sector $\sigma^i |0\rangle$, $i = 1, 2, 3, 4$

Marginal deformation:

$$V_{twist} = cw_\alpha S^\alpha \Delta e^{-\phi} \otimes \text{right-moving part},$$

where $\Delta = \sigma^1 \sigma^2 \sigma^3 \sigma^4$.

BRST language:

$$QV_{twist} = 0$$

Perturbative Setup: Type IIB on $\mathbb{C}^2/\mathbb{Z}_2$

Non-polynomial theory (L_∞ algebra)

$$S[\Psi] = \frac{1}{2}\omega(\Psi, Q\Psi) + \sum_{n=2}^{\infty} \frac{1}{(n+1)!} \omega(\Psi, L_n(\Psi^n))$$

$$0 = \underbrace{Q\Psi}_{\text{Linearized}} + \frac{1}{2!}L_2(\Psi^2) + \frac{1}{3!}L_3(\Psi^3) + \dots$$

We expand the string field Ψ in the deformation parameter λ :

$$\Psi = \sum_{n=1}^{\infty} \lambda^n \Psi^{(n)}, \quad \Psi^{(1)} = V_{\text{twist}}$$

Perturbative Setup: Type IIB on $\mathbb{C}^2/\mathbb{Z}_2$

- ▶ **Order 1 (Linearized):** $Q\Psi^{(1)} = 0$.

Solution: $\Psi^{(1)} = V_{\text{twist}}$ (The marginal blow-up modes w_α, \bar{w}_β).

- ▶ **Order 2:** $Q\Psi^{(2)} = -\frac{1}{2}L_2(\Psi^{(1)}, \Psi^{(1)})$.

Backreaction of the deformation on the metric.

- ▶ **Cohomological obstruction:** The source must be Q -exact.
[Trivial cohomology]

Order 2: Recovering the Metric

To see the geometry change, we contract the second-order field with the **Graviton** state:

$$G_{ij}^{(2)} \sim \langle V_G, \Psi^{(2)} \rangle$$

This is an **off-shell** calculation

SFT correctly captures the resolution of the singularity!

Moduli $w_\alpha = w_\beta = (1/\sqrt{2}, 1/\sqrt{2})$ reproduces the leading correction of the **Eguchi-Hanson Instantons**:

$$H_{I\bar{J}} = \left(1 + \frac{\rho^4}{r^4}\right)^{1/2} \left[\delta_{I\bar{J}} - \frac{\rho^4 \bar{z}_I z_{\bar{J}}}{r^2(\rho^4 + r^4)} \right]$$

Order 3: The Obstruction

Do higher-order corrections destroy the solution? At 3rd order, we face a potential obstruction:

$$\mathcal{O}^{(3)} \sim P_0 [L_2(\Psi^{(1)}, \Psi^{(2)}) + \frac{1}{3!} L_3(\Psi^{(1)}, \Psi^{(1)}, \Psi^{(1)})]$$

By carefully evaluating the contact terms in the large Hilbert space, we prove:

$$\mathcal{O}^{(3)} = 0$$

Conclusion:

The deformation is **unobstructed** to this order
No extra constraints needed

Summary & Outlook

What we have:

- ▶ Used **Closed SFT** to dynamically describe the resolution of $\mathbb{C}^2/\mathbb{Z}_2$
- ▶ **Order 2:** Recovered the Eguchi-Hanson metric (and more)
- ▶ **Order 3:** Proved obstruction vanishes

Demonstrates SFT as a practical tool for extracting new vacuum information.

Possible extensions...

- ▶ All-order background. e.g. p-p wave background argument from charge conservation
- ▶ Non-Kähler background